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ABSTRACT

A general framework for forecast verification based on the joint distribution of forecasts and observations is
described. For further elaboration of the framework, two factorizations of the joint distribution are investigated:
1) the calibration-refinement factorization, which involves the conditional distributions of observations given
forecasts and the marginal distribution of forecasts, and 2) the likelihood-base rate factorization, which involves
the conditional distributions of forecasts given observations and the marginal distribution of observations. The
names given to the factorizations reflect the fact that they relate to different attributes of the forecasts and/or
observations. Several examples are used to illustrate the interpretation of these factorizations in the context of
verification and to describe the relationship between the respective factorizations.

Some insight into the potential utility of the framework is provided by demonstrating that basic elements
and summary measures of the joint, conditional, and marginal distributions play key roles in current verification
methods. The need for further investigation of the implications of this framework for verification theory and
practice is emphasized, and some possible directions for future research in this area are identified.

1. Introduction

Forecast verification is the process and practice of
determining the quality of forecasts, and it represents
an essential component of any scientific forecasting
system. As such, forecast verification serves many im-
portant purposes. These purposes include assessing the
state of the art of forecasting and recent trends in fore-
cast quality, improving forecasting procedures and ul-
timately the forecasts themselves, and providing users
with information needed to make effective use of the
forecasts.

Meteorologists have devoted considerable attention
to forecast verification, in terms of both the develop-
ment of verification methods and the application of
these methods in operational and experimental con-
texts (e.g., see Daan, 1984; Murphy and Daan, 1985).
Verification measures have been formulated with a va-
riety of purposes in mind and for a multitude of dif-
ferent situations. Here, the term “situations” relates
to considerations such as the nature of the underly-
ing variable (continuous/discrete, ordered/unordered,
bounded/unbounded), the climatological likelihood of
occurrence of relevant events (frequent/infrequent),
and the type of forecast (categorical/probabilistic). As
a result, verification measures have tended to prolif-
erate, with relatively little effort being made to develop
general concepts and principles, to investigate the re-
lationships between measures, or to examine their rel-
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ative strengths and weaknesses. This state of affairs has
impeded the development of a science of forecast ver-
ification and undermined the utility of many verifi-
cation concepts and methods.

A need exists for a general framework for forecast
verification. To be useful, such a framework should
(inter alia) (i) unify and impose some structure on the
overall body of verification methodology, (ii) provide
insight into the relationships among verification mea-
sures, and (iii) create a sound scientific basis for de-
veloping and/or choosing particular verification mea-
sures in specific contexts. Moreover, such a framework
should minimize the number of distinct situations that.
must be considered. The primary purpose of this paper
is to describe a framework that appears to meet many
of these goals. :

The basis for the framework for verification de-
scribed here is the joint distribution of forecasts and
observations, which contains all of the relevant infor-
mation. This basic distribution is defined in section 2
and specific examples involving discrete and contin-
uous variables are presented. Section 2 also contains a
discussion of the relationships between the properties
of the joint distribution and the quality of forecasts. In
section 3, we describe two factorizations of the joint
distribution, each of which leads to a distinct approach
to forecast verification. The calibration-refinement
factorization involves the conditional distributions of
the observations given the forecasts and the marginal
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distribution of the forecasts, whereas the likelihood-
base rate factorization involves the conditional distri-
butions of the forecasts given the observations and the
marginal distribution of the observations. These factors
are defined and examples of the conditional and mar-
ginal distributions are presented in section 3. This sec-
tion also includes an interpretation of these factors in
the context of verification and a discussion of the re-
lationship between the alternative factorizations. Sec-
tion 4 discusses current verification methodology from
the perspective provided by the joint distribution and
its respective factorizations. Section 5 contains a brief
summary and some concluding remarks, including a
short discussion of possible directions for future work
in this area.

2. Joint distribution of forecasts and observations

The joint distribution of forecasts and observations
provides the basis for our unified framework for fore-
cast verification. Denoting the forecast by f and the
observation (the observed event or the observed value
of the variable of interest) by x, we let p(f, x) represent
the joint distribution of fand x. This distribution con-
tains information about the forecast, about the obser-
vation, and about the relationship between the forecast
and the observation. Concern with this relationship is
in the spirit of DeGroot and Fienberg (1982, 1983),
who note that the basic data in this context consist of
pairs of forecasts and observations. ‘

This framework is intended to be quite general. An
observation could be a simple observed event in a di-
chotomous situation (e.g., precipitation/no precipita-
tion) or a situation with multiple categories (e.g., clear/
scattered/broken/overcast); the observed value of a
single variable (e.g., maximum temperature, amount
of precipitation); or even a multivariate observation
(e.g., a joint observation of wind speed and visibility,
a joint observation of temperature and type of precip-
itation). The forecast could be a categorical forecast
(e.g., “rain tomorrow,” “high temperature tomorrow
74°F”), a forecast with a qualitative expression of un-
certainty (e.g., “chance of rain tomorrow”), or a prob-
ability forecast (e.g., “60% chance of rain tomorrow”’).
A probability forecast is the most informative of these
three types of information, and a categorical forecast
can be thought of as a special case of a probability
forecast with probability one assigned to a particular
event or value of the variable of interest.

In theory, p(f, X) represents the joint probability dis-
tribution of fand x. In this sense, it is an ex ante dis-
tribution that is useful in comparing forecasters or
forecast systems and in assisting decision makers who
must choose a forecaster or system to consult for future
forecasts. The theoretical joint probability distribution
contains all information that is relevant to the evalu-
ation of a forecaster or forecast system.

For decision-making purposes, the ex ante approach
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is appropriate, and a decision maker can assess a dis-
tribution p(f, x), using any available information. Ver-
ification, however, usually involves ex post evaluation
based on empirical analysis. Since our concern in this
paper is with forecast verification, we will interpret
p(f, x) as an empirical relative frequency distribution
based on a sample of past forecasts and observations
{(fi, x:); i = 1,+ « -, n}. The relative frequency distri-
bution summarizes the sample of data. In fact, if the
time order of the forecast—observation pairs is not of
interest, then the relative frequency distribution cap-
tures all relevant information in the sample. We can
think of the relative frequency distribution as being an
estimate of the theoretical probability distribution that
we would ideally like to know.

Example A. The simplest verification situation in-
volves. categorical forecasts of a dichotomous event
such as precipitation/no precipitation. Here we define

if precipitation is forecast,

if no precipitation is forecast,

if precipitation occurs,
if precipitation does not occur.

The joint distribution of fand x can be displayed in
terms of a 2 X 2 contingency table containing the rel-
ative frequencies with which (f, x) equals (1, 1), (1, 0),
(0, 1), and (0, 0).

Example B. Probability of precipitation (PoP) fore-
casts represent a generalization of Example A to the
case where f takes on, say, 13 possible values (0.00,
0.02, 0.05, 0.10, 0.20, . . . , 0.90, 1.00). Therefore,
the contingency table in this situation is 13 X 2 and
contains relative frequencies such as the joint relative
frequency with which f= 0.20 and x = 1.

Example C. Temperature forecasting provides an
example with an underlying variable (temperature) that
is essentially continuous. If x represents maximum
temperature and frepresents a categorical (point) fore-
cast of maximum temperature, then the (f, x)-pairs
can be displayed graphically as a scatter diagram of
points in two-dimensional space. When temperature
is forecast and observed to the nearest degree (Fahr-
enheit or Celsius) or in intervals of values, p(f, x) can
be depicted in terms of a contingency table.

If the joint distribution of forecasts and observations
provides the basis for our general framework for fore-
cast verification, we might ask which joint distributions
indicate “good” forecasting and which indicate “bad”
forecasting. On the good side, consider the extreme
case of perfect forecasts. In Examples A and B, perfect
forecasting implies that all of the relative frequencies
are zero except for p(1, 1) and p(0, 0). In Example C,
perfect forecasting implies that all of the (f, x)-pairs
are on the line ' = x or on the principal diagonal of
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the contingency table. Perfect forecasts are an unat-
tainable ideal, but the closer a forecaster or forecast
system can approach that ideal, the better.

The bad side is a bit more complicated, since many
ways exist in which forecasts can be bad. Moreover,
the perspective taken by the user can influence the def-
inition of a bad forecast. For example, if the user takes
the forecasts at face value, then the worst distributions
in Examples A and B would consist of all of the relative
frequencies being equal to zero except for p(1, 0) and
p(0, 1), implying that the forecaster is always “dead
wrong.” However, to a user who realizes that the fore-
casts are always dead wrong, such forecasts are very
helpful because the user can convert them appropriately
(“if the forecast says rain, I am sure that it will not
rain,” etc.). Perhaps the worst, least useful forecasts are
those yielding a joint distribution such that the column
of relative frequencies p(f, 1) is a constant multiple of
the column of relative frequencies p(f; 0), which implies
that the forecasts and observations are independent in
a statistical sense.

Keeping in mind our focus on forecast verification,
which takes the forecasts at face value, the general
statement can be made that we prefer joint distributions
that assign high relative frequencies to (f, x)-pairs with
Sfequal to or close to x and low relative frequencies to
(f; x)-pairs with f not close to x. To learn more about
specific characteristics of a forecaster or forecast system,
we need to factor the joint distribution of fand x into
a conditional distribution and a marginal distribution.
This process can be accomplished in two ways, and
the two factorizations are described and discussed in
section 3. |

3. Factorization of the joint distribution

Although the joint distribution of forecasts and ob-
servations contains all information relevant to verifi-
cation, the information is more accessible when we
factor the distribution. Any joint distribution can be
factored into a conditional distribution and a marginal
distribution in two ways. Thus, in considering both of
these factorizations, we obtain two types of conditional
distributions and two marginal distributions, each of
which relates to particular aspects of verification. The
two factorizations are presented in sections 3a and 3b,
and some relationships between the factorizations are
discussed in section 3c.

a. Calibration-refinement factorization

The first factorization we consider involves the con-
ditional distributions of the observations given the
forecasts and the marginal distribution of the forecasts:

p(£,x)=px| Np(f). (1)

Here we have a conditional distribution p(x}f) for
each possible forecast value fand a marginal distribu-

tion p(f).
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The conditional distribution p(x|f) indicates how
often different observations have occurred when a par-
ticular forecast f was given. In the case of categorical
forecasts of precipitation/no precipitation (Example A),
we have two conditional distributions, p(x|1) and
p(x]0). The first, p(x|1), tells us the proportion of oc-
casions with precipitation and the proportion with no
precipitation among all of the occasions on which a
forecast of precipitation was given. The other condi-
tional distribution, p(x|0), tells us the proportion of
occasions with and without precipitation given a
forecast of no precipitation. Naturally, we would
like p(x = 1|f = 1) to be as large as possible and
p(x = 1|f = 0) to be as small as possible.

With PoP forecasts (Example B), we have 13 con-
ditional distributions p(x| /) corresponding to the 13
possible values of /. For instance, f(x = 1]0.60) indicates
the relative frequency of days with precipitation among
the days with a precipitation probability forecast of
0.60. Ideally, we would like to have

pix=1|f)=f .

If (2) is satisfied for all £ then the forecaster or forecast
system is said to be perfectly calibrated or perfectly
reliable (e.g., Murphy and Winkler, 1977). Thus, the
conditional distributions of the observations given the
forecasts relate to the calibration or reliability of the
forecasts. The values of p(x = 1|f) are often plotted
against f in a reliability diagram to depict the calibra-
tion of a set of probability forecasts.

When more than two values of x exist, as in tem-
perature forecasting (Example C), the conditional dis-
tribution p(x| /') consists of several relative frequencies
and cannot be represented by just one of these fre-
quencies. In this case, we can say that the set of forecasts
is perfectly calibrated or reliable if

Ex\f)=1,

where E(x| f) is the expected value of x given the fore-
cast f. In the temperature example, a forecast system
is perfectly calibrated if for any forecast f, the average
observed temperature is equal to f.

The marginal distribution p(f’) indicates how often
different forecast values are used. Consider PoP fore-
casts, for example. If the same forecast is always given,
then the forecasts are said not to be refined, or sharp.
A forecast system that always simply reported the cli-
matological probability would never have any variation
in forecasts and would not be able to distinguish be-
tween days with precipitation and days without pre-
cipitation. At the other extreme of perfect sharpness
would be the forecast system that only gives PoP fore-
casts of zero and one.

Note that calibration and refinement are two sepa-
rate concepts and both are of interest for verification
purposes. We could have a forecaster who is perfectly

3
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calibrated but shows no refinement (e.g., a forecaster
who always takes climatology as the forecast). At the
other extreme, we could have a forecaster who appears
refined by giving only categorical forecasts of precipi-
tation but who is not at all calibrated. For example,
suppose that p(f= 1) = 0.4 and p(f = 0) = 0.6 but
that p(x = 1|f= 1) = p(x = 1|f = 0) = 0.4. Neither
of these extremes is very helpful. We would prefer a
forecaster who is both well calibrated and quite refined.
Another perspective is provided by recognizing that we
would like the forecaster to be as refined as possible
without sacrificing calibration. Maintaining calibration
means that we can use the forecasts at face value, and
better refinement means that the forecasts distinguish
effectively among situations leading to different obser-
vations (values of x).

It may also be instructive to reconsider briefly the
issue of the worst, least useful forecasts from the per-
spective of the conditional and marginal distributions,
p(x1f) and p(f), introduced in this section. If inde-
pendence of forecasts and observations is taken as the
condition for the least useful forecasts, then this con-
dition implies that p(x]f) = p(x). In this case, the
probability of occurrence of the events is independent
of the forecasts and equals the respective sample cli-
matological probability. Since this condition leads to
a situation in which the forecasts are uninformative
with respect to the observations, it seems quite reason-
able to describe such forecasts as “least useful.”

b. Likelihood-base rate factorization

The second factorization involves the conditional
distributions of the forecasts given the observations and
the marginal distribution of the observations:

p(£,x)=p(f|x)p(x). 4

In this factorization we have a conditional distribution
p(f|x) for each possible observation x and a marginal
distribution p(x).

The conditional distribution p(f|x) indicates how
often different forecasts are given before a particular
value of x is observed. With categorical forecasts of
precipitation/no precipitation (Example A), two con-
ditional distributions exist, p(f|1) and p(f10). The first,
Dp(f1), gives the proportion of occasions with forecasts
of precipitation and forecasts of no precipitation among
those occasions on which precipitation eventually oc-
curs. The second, p(f|0), provides the same infor-
mation for those occasions on which precipitation does
not occur. With PoP forecasts (Example B), we also
have two conditional distributions that indicate how
often each of the 13 possible forecasts are given pre-
ceding days with precipitation and how often they are
given preceding days with no precipitation. We would
hope that high values of f are given more often when
X turns out to be one and that low values of fare glven
more often when x turns out to be zero.
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For a given forecast f, the conditional probabilities
p(f|1) and p(f'|0) are called the likelihoods associated
with that forecast. This terminology, which comes from
the field of statistics (e.g., see Winkler, 1972), reflects
the fact that these probabilities tell us how likely the
forecast f is given that we will observe x = 1 and given
that we will observe x = 0. These likelihoods indicate
how well the forecast fdiscriminates between days with
x = 1 and days with x = 0. When more than two values
of x are possible, as in the case of temperature forecasts
(Example C), as many likelihoods exist as values of x,
and the likelihoods indicate how well the forecast f
discriminates among the various values of x. For a
forecast f; if p(f'|x) is very similar for different x, the
forecast is not very discriminatory. In the extreme,
when p(f|x) is the same for all x, the forecast is not at
all discriminatory and provides us with no useful in-
formation about x. When the likelihoods are very dif-
ferent for different x, the forecast is much more dis-
criminatory and hence very informative about x. The
forecast fis perfectly discriminatory if p(f|x) equals
zero for all values of x except one. Then we can be
certain, upon seeing this forecast £, that the value of x
corresponding to the nonzero likelihood will occur.

The marginal distribution p(x) indicates how often
different values of x occur. With precipitation/no pre-
cipitation, it tells us the relative frequency of precipi-
tation and the relative frequency of no precxpltatlon
With observations falling into several categories, it gives
the relative frequencies of all of the categories (e.g.,
clear/scattered/broken/overcast). In the case of a con-
tinuous variable such as maximum temperature, p(x)
provides an entire distribution for the values of x.

Note that p(x) is the only element of either factor-
ization that does not involve f in any way. It is a char-
acteristic of the forecasting situation, not of the fore-
caster or forecast system. This characteristic is often
referred to as the base rate (e.g., see Lichtenstein et al.,
1982). In weather forecasting, the base rate is generally
called sample climatology.

If independence of the forecasts and observations is
once again taken as the condition characterizing the
worst, least useful forecasts, then this condition implies
that p(f|x) = p(f). For such forecasts, the conditional
distribution of the forecasts given an observation is the
same for all observations and is therefore identical to
the marginal distribution. In this situation, the obser-
vations are uninformative with respect to the forecasts.

The likelihood-base rate factorization gives us a sep-
aration of two types of information that may be helpful
in predicting x. The base rate reflects historical obser-
vations (since it can be viewed as an estimate of the
long-term climatology) and indicates how we should
predict x in the absence of a forecast. The likelihoods
then reflect the new information contained in the fore-
cast and indicate how helpful this forecast is above and
beyond the base rate of sample climatology.



1334

c. Relationship between factorizations

The four elements in the two factorizations measure
different characteristics of the forecaster or forecast
system and of the forecast situation. However, some
relationships among these elements must exist, since
we know that

PN =p(fPX). ()

We can also rewrite (5) in a form known as Bayes’
theorem:

px)p(f|x)
p(f)

Here the base rate p(x) and the likelihoods p(f|x) are
multiplied to combine the two types of information
that they represent. This product is then divided by
p(f) to normalize and yield p(x| f), which reflects both
the base rate information and the information con-
tained in the forecast f.

To illustrate (5) and (6), we consider some data in
the context of Example B. The joint distribution pre-
sented in Table 1 is based on 2820 PoP forecasts (and
the corresponding observations) formulated by a par-
ticular National Weather Service (NWS) forecaster at
Chicago, Illinois, during the period July 1972 through
June 1976. The marginal distributions of fand x are
given in the margins of this table, and the conditional
distributions p(x| /) and p(f|x) are presented in Table
2. For any pair (f, x), (5) and (6) will be satisfied. For
example, if we take.f = 0.40 and x = 1 and use Tables
1 and 2,

p(x=1]f=0.40)p(f=0.40) ‘
=0.3662(0.0609) = 0.0223

pixlf)= (6)

and
p(f=0.40\x = 1)p(x=1)=0.0895(0.2493) = 0.0223

are equal, as indicated by (5). Also, from (6);

p(x=1)p(f=0.40{x=1)
=1]f=0.40)=
p(x=1lf ) (/= 0.40)
_ 0.2493(0.0895)
0.0609
agrees with p(x = 1| f= 0.40) as given in Table 2 except

for a slight discrepancy at the fourth decimal place
caused by roundoff error.

=0.3664
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To some degree, then, we must have consistency
between the factorizations. For example, if a forecast
system is perfectly calibrated and perfectly refined, then
the likelihoods must be perfectly discriminatory. How-
ever, the converse does not hold. The likelihood func-
tion can be perfectly discriminatory even though the
forecaster is not well calibrated or refined. With PoP
forecasts (Example B), suppose that p(f'= 0.40, x = 0)
=0.7, p(f= 0.80, x = 1) = 0.3, and p(/, x) = O for all
other (f, x)-pairs. These forecasts are perfectly discrim-
inatory; f is either 0.40 or 0.80, with precipitation al-
ways following forecasts of 0.80 and never following
forecasts of 0.40. However, the forecaster is not well-
calibrated, since p(x = 1|f = 0.40) = 0 (#0.40) and
p(x = 1|f = 0.80) = 1 (#0.80). Neither is the forecaster
perfectly refined; forecasts of zero and one are never
given. In this numerical example the forecaster is really
capable of being a perfect forecaster but apparently
does not realize it! Of course, perfect forecasting is not
generally attainable, and considering extreme examples
such as this case may not be particularly informative.
However, it does provide some insight into differences
between the two factorizations. The likelihood-base rate
factorization focuses on how discriminatory a forecast
is regardless of the “label” f. If f~values of 0.80 and 0.40
are perfectly discriminatory, then for the purposes of
the likelihoods they are just as valuable as if they were
one and zero. In this sense, the likelihood-base rate
factorization might be thought of as being more ori-
ented toward properties that indicate the potential value
of the information contained in the forecasts if they
are used appropriately. The calibration-refinement
factorization is oriented more toward the labels as-
signed to the forecasts and toward the actual properties
of the forecasts when they are taken at face value.

The difference between the-factorizations in terms
of impact upon the users of the forecasts depends on
their degree of sophistication. If the users are sophis-
ticated and are aware of the base rate and the likeli-
hoods, then poor calibration and refinement are irrel-
evant for practical purposes. The base rate represents
a user’s information before seeing the forecast, and the
likelihoods enable the user to revise this information
after seeing the forecast. Note, however, that this pro-
cess does require some effort and knowledge of the
characteristics of the forecaster or forecast system. For
less sophisticated users, who take the forecasts at face

TABLE 1. Joint and marginal distributions of PoP forecasts and observations for NWS forecaster at Chicago, lllinois.

! .
0.00 0.02  0.05 0.10 0.20 0.30 0.40 050  0.60 0.70 0.80 0.90 1.00 px)
N 110.0014 { 0.0018 | 0.0028 | 0.0138 | 0.0316 | 0.0255 | 0.0223 | 0.0383 | 0.0309 | 0.0426 | 0.0216 | 0.0135 | 0.0032 | 0.2493
0] 0.0557 | 0.0500 | 0.0972 | 0.1901 | 0.1773 | 0.0656 | 0.0386 | 0.0337 | 0.0213 | 0.0138 | 0.0074 | 0.0000 | 0.0000 | 0.7507
p(f) 0.0571 0.0518 0.1000 0.2039 0.2089 0.0911 0.0609 0.0720 0.0522 0.0564 0.0290 0.0135 0.0032
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TABLE 2. Conditional distributions p(x | f) and p(f] x) for NWS forecaster at Chicago, Illinois.
f
0.00 0.02 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
plx=1]f) | 0.0245 | 0.0347 { 0.0280 | 0.0677 | 0.1513 | 0.2799 | 0.3662 | 0.5319 | 0.5920 | 0.7553 | 0.7448 | 1.0000 ! 1.0000
px=0[f) | 09755 | 0.9653 | 0.9720 | 0.9323 | 0.8487 | 0.7201 | 0.6338 | 0.4681 | 0.4080 | 0.2447 | 0.2552 | 0.0000 | 0.0000
S
0.00 0.02 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
p(flx=1) | 0.0056 | 0.0072 { 0.0112 | 0.0554 | 0.1268 | 0.1023 | 0.0895 | 0.1536 | 0.1239 | 0.1709 | 0.0866 | 0.0542 | 0.0128
p(flx=0) | 0.0742 | 0.0666 | 0.1295 | 0.2532 | 0.2362 | 0.0874 | 0.0514 | 0.0449 | 0.0284 | 0.0184 | 0.0099 | 0.0000 | 0.0000

value, calibration and refinement are important. A
poorly-calibrated forecasting system would lead such
users astray. Since we cannot assume that consumers
of weather forecasts are sophisticated, properties such
as calibration and refinement are important in practice
although they might be dismissed as relatively unim-
portant in theory in a perfect world with completely
knowledgeable and rational users of forecasts.

4. The framework and current verification methods

The joint distribution of forecasts and observations
described in section 2, together with the factorizations
of this distribution discussed in section 3, appear to
constitute a potentially useful, general framework for
forecast verification. It now seems appropriate to ask
to what extent this framework meets the conditions
for usefulness set forth in section 1. For example, does
the framework unify and impose some structure on
the body of verification methodology? Does it provide
insight into the relationships among verification mea-
sures? In this section, we will attempt to obtain some
tentative answers to such questions, primarily by ex-
amining current verification methods from perspectives
provided by this framework. In-depth evaluations of
the framework and its ability to produce a sound sci-
entific basis for developing and choosing verification
methods are beyond the scope of this paper and will
necessarily require a considerably more detailed and
comprehensive assessment than that presented here.

First, we believe that the framework embodied by
the joint distribution of forecasts and observations re-
veals the inherent unity of forecast verification. Recall
that the joint distribution contains a// of the relevant
information. Therefore, whether the variable of con-
cern is discrete or continuous or the forecasts are cat-
egorical or probabilistic, this distribution possesses the
basic ingredients required for verification purposes. As
a result, it should not be necessary to approach the
verification problem from different perspectives in dif-
ferent situations; all situations should yield to a com-
mon approach.

Notwithstanding the overall unity provided by the
joint distribution, the existence of two factorizations

of this distribution appears to suggest that (at least) two
distinct approaches to forecast verification are available,
An approach based on the calibration-refinement fac-
torization would naturally focus on the calibration (re-
liability) and the refinement (sharpness) of the forecasts.
Alternatively, an approach based on the likelihood-base
rate factorization would focus on the ability of the
forecasts to discriminate among the observations and
on the base rates (sample climatological probabilities)
of these observations. In this regard, DeGroot and
Fienberg (1982, 1983) employ the calibration-refine-
ment factorization, although they also mention the
likelihood-base rate factorization. The latter is the basis
of the work by Lindley (1982) on improving probability
forecasts. We believe that these factorizations constitute
complementary rather than alternative ways to ap-
proach the verification problem. After all, as noted in
section 3, the two factorizations are concerned with
different attributes of the forecasts and/or observations.
Thus, a complete verification study would necessarily
involve the evaluation of factors associated with both
factorizations.

We believe that the framework also imposes some
useful structure on the body of verification method-
ology. For example, since the joint, conditional, and
marginal distributions possess the basic ingredients
needed for verification purposes, the distributions
themselves—or elements thereof—can be considered
to represent verification measures. Although recogni-
tion of this fact is implicit in many verification pro-
cedures and practices, it has seldom been explicitly ac-
knowledged and its implications have not been fully
explored. Moreover, the fundamental role played by
these distributions suggests that common summary
measures (means, variances, etc.) of such distributions
should be useful verification measures in many situa-
tions. To what extent do current verification measures
reflect these perspectives?

To answer this question in part, we consider here
the conditional distributions of observations given
forecasts and of forecasts given observations [p(x|f)
and p(f'|x), respectively] and briefly examine current
verification procedures and practices in situations rep-
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resented by Examples A, B, and C. In the case of cat-
egorical forecasts of precipitation occurrence (Example
A), attention has generally focused on measures based
on elements of the joint and/or marginal distributions,
such as the fraction correct and various skill scores
(e.g., see Daan, 1984). However, recognition of some
deficiencies in these measures has led to the consid-
eration of conditional probabilities such as p(x = 1
|f=1) and p(f = llx = 1) in certain situations. In
the early verification literature, these conditional prob-
abilities were referred to as “prefigurance” and “post
agreement,” but more recently the terms “hit rate”
and “probability of detection™ have gained favor. [In
reality, it is p(x = 0| f = 1) rather than p(x = 1|f= 1)
that is usually computed, and the former is generally
referred to as the “false alarm rate.”] These conditional
probabilities are particularly useful measures of forecast
quality in situations in which the base rates (i.e., cli-
matological probabilities) of the two events are quite
dissimilar,

The conditional distributions of observations given
forecasts—or at least the expectations of these distri-
butions—have been used to evaluate precipitation
probability forecasts (Example B) for many years. As
noted in section 3a, comparison of p(x] /) and f in this
context provides a means of assessing the reliability
(calibration) of such forecasts. Unlike p(x| f), the con-
ditional distributions of the forecasts given the obser-
vations, p(f |x), have generally not been considered in
evaluating precipitation probability forecasts. Recent
exceptions to this statement can be found in a paper
by Mason (1982) describing verification methods based
on signal detection theory and in an example discussed
by Lindley (1982).

In the case of categorical forecasts of temperature
(Example C), the conditional distributions p(x| f) and
p(f1x) have seldom been reported in published veri-
fication studies. Interest here has centered almost ex-
clusively on overall measures of quality such as the
mean absolute error or mean square error. It should
be noted that verification based solely on such measures
assumes, in effect, that all errors of the same size are
equally important and that the conditional distribu-
tions are similar for all values of for x.

This admittedly superficial examination of the cur-
rent use of the conditional distributions p(x|f) and
p(f1x) in verification studies suggests that these fun-
damental and important distributions are frequently
ignored or underutilized. Moreover, even when they
are considered, full and consistent use of the infor-
mation contained in these distributions is seldom
achieved. We believe that careful and reasoned eval-
uation of p(x| /) and p(f'|x)—and of the marginal and
joint distributions—could greatly enhance the insights
provided by the verification process.

Although some use is made of the basic distribu-
tions—and elements thereof—in current verification
studies, such studies traditionally rely primarily on so-
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called verification measures. These mathematical
functions generally represent measures of particular
attributes of the forecasts and/or observations. Since
forecast verification is concerned to a considerable ex-
tent with the correspondence between forecasts and ob-
servations on either an individual or a collective basis,
many verification measures are simple functions of the
differences between (or ratios of) these quantities. In
this context, then, it seems appropriate to ask the fol-
lowing question: What, if any, are the relationships
between such measures and the general framework for
verification described in this paper? As an illustration
of some issues involved in attempting to answer this
question, we consider a familiar measure of the accu-’
racy of forecasts—the mean square error (MSE)—in
the context of the situations represented by Examples
A,Band C.

In terms of the notation employed in this paper
MSE can be expressed as follows:

MSE = E[(f—x)'] = Z Z(f —xyp(fx). (D

As its name implies, MSE is the average square dif-
ference (or distance) between the individual pairs of
forecasts and observations. This measure is frequently
used to evaluate categorical forecasts of temperature
(Example C). Thus, it is of some interest to note that
MSE, as defined in (7), is also identical to the Brier
score (Brier, 1950), the most commonly used measure
of the accuracy of precipitation’ probability forecasts
(Example B). Moreover, in the case of categorical fore-
casts of precipitation occurrence (Example A), MSE
= p(1, 0) + p(0, 1), which implies that this measure is
one minus the fraction correct.

It is also of interest to note that MSE itself can be
decomposed into measures of other attributes of the
forecasts and observations. For example, it is well
known that MSE can be written as follows:

MSE = Var(f — x) + [E(f) ~ EQ) )

The first term on the right-hand side (rhs) of (8) is the
variance of the forecast errors, whereas the second term
on the rhs of (8) is the square of the difference between
the average forecast and average observation (this latter
term is a measure of bias).

Moreover, since

Var(f—x)=Var(f)+ Var(x) -2 Cov(£,x), (9)
MSE in (8) can also be written as
MSE = Var(f) + Var(x) — 2 Cov(f, x)
+E()—-ExP.  (10)

Thus, MSE can be expressed in terms of means and
variances of the marginal distributions, p(f) and p(x),
and the covariance of the joint distribution, p(f; x).
This decomposition of MSE can be applied in any sit-
uation, including the situations represented by Ex-
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amples A, B, and C. [The decomposition of MSE in
(10) is similar to a recent decomposition of the Brier
score described by Yates (1982).]

When x is a binary variable, as in the cases of Ex-
amples A and B, it is possible to obtain other useful
decompositions of MSE by conditioning either on the
forecasts or on the observations. In the case of the
former, MSE can be expressed as follows (Murphy,
1973):

MSE = Var(x) + E;[ f— E(x| f)?
—E[ExXIf)-Ex)P (11)

in which E; (- ) represents the expectation with respect
to the marginal distribution p(f). The terms in this
decomposition involve simple summary measures of
the marginal distributions [p(f) and p(x)] and of the
conditional distributions of the observations given the
forecasts [p(x|f)]. Thus, this decomposition is related
to the calibration-refinement factorization of the joint
distribution. Specifically, the second term on the rhs
of (11) is obviously a measure of the reliability (cali-
bration) of the forecasts. On the other hand, the third
term on the rhs of (11) relates to the differences between
the conditional expectations E(x| ) and the marginal
(unconditional) expectation E(x) and, in view of the
sign of this term, larger differences are preferred to
smaller differences. This attribute of the forecasts has
been referred to as “resolution” (Murphy and Daan,
1985).

In the case of conditioning on the observations, MSE
can be decomposed as follows:

MSE = Var(f) + Ex[x— E(f1x)]?
—EJE(fIx)-ENP (12)

in which E,( - ) represents the expectation with respect
to the marginal distribution p(x). (We are indebted to
E. S. Epstein for identifying this particular decompo-
sition of MSE. See also Murphy, 1986.) The decom-
position in (12) is related to the likelihood-base rate
factorization of the joint distribution, and the terms in
this decomposition involve summary measures of the
conditional distribution p(f|x) and the marginal dis-
tributions p(f) and p(x). The second term on the rhs

of (12) is the weighted squared difference between the .

observation (zero or one) and the average forecast as-
sociated with that observation (or event), where the
weights are the base rates of the events. This term can
be viewed as the weighted average of the errors in the
(conditional) average forecasts. The third term on the
rhs of (12) is the weighted squared difference between
the average forecast associated with each observation
and the overall (unconditional) average forecast. In
view of the minus sign, larger differences are preferred
here to smaller differences. This term measures the ex-
tent to which the average forecasts associated with the
events differ from one another.
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In this section, we have briefly examined some com-
mon verification methods and measures from the per-
spectives of the general framework. This discussion has
provided some useful insights into the fundamental
role that the basic distributions constituting this
framework play in current verification methodology.
Some other relationships between scoring rules (such
as the Brier score) and the distribution of forecasts and
observations are discussed in Winkler (1986). In the
next section, we discuss the need for further investi-
gation of the relationships between this framework (and
its components) and verification methods.

5. Discussion and conclusion

In this paper we have described a general framework
for forecast verification. The framework is based on
the joint distribution of forecasts and observations
which contains information about the forecasts, about
the observations, and about the relationship between
the forecasts and observations. The information em-
bodied in the joint distribution is more accessible when
this distribution is factored into conditional and mar-
ginal distributions. Two such factorizations exist, each
of which relates to particular aspects of verification.
The so-called calibration-refinement factorization in-
volves the conditional distributions of the observations
given the forecasts and the marginal distribution of the
forecasts, and it contains information regarding the re-
liability and sharpness of the forecasts. On the other
hand, the so-called likelihood-base rate factorization
involves the conditional distributions of the forecasts
given the observations and the marginal distribution
of the observations, and it provides information re-
garding the ability of the forecasts to discriminate
among the observations and regarding the forecasting
situation itself (in terms of the relative frequencies of
the observations). A preliminary investigation of some
common verification measures in current use indicates
that some of these measures are either elements of the
basic distributions or are related to summary measures
(e.g., mean, variance) of these distributions.

At this point, two questions suggest themselves.
What are the implications of the general framework
for verification theory and practice? What directions
might future studies of verification take in light of this
framework? With regard to the former, we believe that
recognition of the fact that the joint distribution con-
tains all of the information relevant to verification sug-
gests that this distribution—or, equivalently, the factors
involved in the factorizations of the joint distribution—
should play a central role in verification studies. In
recent years, attention has tended to focus on verifi-
cation measures rather than on more basic indicators
of performance such as the joint distribution (and its
factorizations). Common verification measures are
quite useful in situations in which the primary objective
is simply to compare forecasting procedures or fore-
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casters in some overall sense, but they are not partic-
ularly helpful when it comes to obtaining a more de-
tailed understanding of the strengths and weaknesses
in forecasts or to identifying ways in which the forecasts
might be improved. A “diagnostic” approach to veri-
fication based at least in part on the general framework
described here might provide the basis for a more ef-
fective verification system from the viewpoints of both
the producers and users of the forecasts.

In section 4, we reported the results of a preliminary
investigation of relationships between the general
framework and some common verification measures.
This investigation revealed that many such measures
are directly related either to the basic distributions
themselves or to summary measures of these distri-
butions. We believe that more comprehensive and de-
tailed studies of this type are warranted, since they may
clarify the relationships between various verification
methods and measures and may provide additional in-

sight into the interpretation of verification data. In a .

related vein, studies of the empirical joint, conditional,
and marginal distributions for various types of fore-
casts, including efforts to model these distributions,
should also prove quite valuable. Recent examples of
related modeling studies include Clemen and Winkler
(1987), Krzysztofowicz (1986), and Mason (1982). The
existence of reasonably faithful models of such distri-
butions would have important implications for veri-
fication methods and practices. _

As noted in section 1, the field of verification is cur-
rently characterized by a wide variety of apparently
unrelated methods and measures. Perhaps the most
immediate benefit of the general framework described
in this paper is that it provides a new and unified way
of looking at the verification problem. The perspective
provided by this framework should prove to be quite
useful, both to those concerned with verification meth-
odology and those concerned with verification practice.
Additional theoretical and practical work will be re-
quired before it will be possible to render a more precise
assessment of the framework’s ultimate utility.
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