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ABSTRACT

A diagnostic approach to forecast verification is described and illustrated. This approach is based on a general
framework for forecast verification. It is “diagnostic” in the sense that it focuses on the fundamental characteristics
of the forecasts, the corresponding observations, and their relationship.

Three classes of diagnostic verification methods are identified: 1) the joint distribution of forecasts and ob-
servations and conditional and marginal distributions associated with factorizations of this joint distribution;
2) summary measures of these joint, conditional, and marginal distributions; and 3) performance measures
and their decompositions. Linear regression models that can be used to describe the relationship between forecasts
and observations are also presented. Graphical displays are advanced as a means of enhancing the utility of this
body of diagnostic verification methodology.

A sample of National Weather Service maximum temperature forecasts (and observations) for Minneapolis,
Minnesota, is analyzed to illustrate the use of this methodology. Graphical displays of the basic distributions
and various summary measures are employed to obtain insights into distributional characteristics such as central
tendency, variability, and asymmetry. The displays also facilitate the comparison of these characteristics among
distributions—for example, between distributions involving forecasts and observations, among distributions
involving different types of forecasts, and among distributions involving forecasts for different seasons or lead
times. Performance measures and their decompositions are shown to provide quantitative information regarding
basic dimensions of forecast quality such as bias, accuracy, calibration (or reliability), discrimination, and skill.
Information regarding both distributional and performance characteristics is needed by modelers and forecasters
concerned with improving forecast quality. Some implications of these diagnostic methods for verification
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procedures and practices are discussed.

1. Introduction

Verification of temperature forecasts has tradition-
ally consisted of the computation of a few overall mea-
sures of performance such as the mean absolute error
or mean square error (e.g., Carter and Polger 1986;
Murphy and Daan 1985). Such practices may be ad-
equate to describe the general state of the art of tem-
perature forecasting or to assess overall trends in the
quality of temperature forecasts. However, current
verification procedures and practices are inadequate
when the objective is either to identify the fundamental
strengths and weaknesses in temperature forecasts or
to provide modelers and forecasters with feedback as
a basis for improving the quality of such forecasts.
Moreover, the needs of users for information regarding
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the basic characteristics of temperature forecasts are
not adequately met by overall performance measures.

A general framework for forecast verification was
recently described by Murphy and Winkler (1987)
(hereafter referred to as MW87). This framework is
based on the joint (probability ) distribution of forecasts
and observations and on the conditional and marginal
distributions associated with factorizations of the joint
distribution. Since these distributions describe the fun-
damental statistical characteristics of the forecasts and
observations and their relationship, they appear to rep-
resent a sound basis for a logically coherent and gen-
uinely insightful approach to forecast verification—an
approach that has been lacking heretofore. Although
the outlines of such an approach—referred to here as
diagnostic verification—were implicit in MW87, the
approach itself was not described explicitly in the earlier
paper. Moreover, this approach—and its associated
methodology—have not as yet been applied to samples
of real forecasts and observations. Clearly, such an ap-
plication constitutes the ultimate test of the utility of
the diagnostic approach to verification.

Diagnostic verification not only represents a sound
approach to forecast verification, it also contains a use-
ful set of verification methods. The fundamental ele-
ments in this set of methods are the joint, conditional,
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and marginal distributions of the forecasts and obser-
vations. In addition, the body of diagnostic verification
methodology includes summary measures of these dis-
tributions as well as overall performance measures and
their decompositions. In contrast to traditional verifi-
cation methods, these diagnostic methods focus on ba-
sic statistical characteristics of the forecasts and obser-
vations and their relationship. Particular attention is
devoted to assessing the conditional characteristics of
the observations given the forecasts and vice versa. To
facilitate insights into basic characteristics of forecasting
performance, diagnostic verification also makes exten-
sive use of graphical displays in describing and sum-
marizing various results. Information forthcoming
from this approach and the associated body of meth-
odology is more likely to be useful to modelers and
forecasters in the process of identifying deficiencies in
forecasts—and of obtaining insights into ways in which
forecasts might be improved—than information forth-
coming from traditional verification approaches and
methods.

The primary purposes of the present paper are to
describe a diagnostic approach to forecast verifica-

tion—and its attendant methodology—and to illustrate -

the use of this methodology by presenting some results
of a diagnostic analysis of short-range temperature
forecasts. The diagnostic approach to forecast verifi-
cation is outlined in section 2. This section focuses on
the identification of a potentially useful body of diag-
nostic verification methodology and briefly contrasts
“these methods with current procedures. Mathematical
details related to various aspects of this methodology
are incorporated into several appendices. The insights
provided by this approach are illustrated in section 3
by applying these diagnostic verification methods to a
sample of U.S. National Weather Service (NWS) max-
imum temperature forecasts. Section 4 reviews the im-
portant features of these methods, summarizes the in-
sights provided by their use, and discusses their impli-
cations for verification procedures and practices. In
" addition, some possible extensions of the diagnostic
approach to forecast verification presented here are
outlined in this section.

2. Diagnostic verification: general approach and
methods :

a. General approach

As indicated in MW87, the joint distribution of
‘forecasts and observations provides a general frame-
work for forecast verification. If the forecasts and ob-
servations are denoted by f and x, respectively, then
this joint distribution can be denoted by p(f, x). For
a sample of data (forecasts and observations), p(f, x)
specifies the relative frequency of occurrence of par-
ticular combinations of values of f and x. With the
application to temperature forecasts in mind, both f
and x are assumed to be defined on the set of integer
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values (i.e., the forecasts are nonprobabilistic). The
joint distribution p(f, x) contains information about
the forecasts, the observations, and the relationship be-
tween the forecasts and observations. In fact, p(f, x)
contains all of the nontime-dependent information
relevant to forecast verification.

The information contained in p(f, x) is more ac-
cessible when this distribution is factored into condi-
tional and marginal distributions. Two such factori-
zations are possible; namely, 1) p(f, x) = p(x|f) p(f)
and 2) p(f, x) = p(f|x) p(x). In the first factorization,
p(f, x) is factored into conditional distributions of the
observations given the forecasts, p(x|f), and the mar-
ginal distribution of the forecasts, p(f). For a sample
of data, the conditional distribution p(x|f) specifies
the relative frequency of occurrence of the various ob-
servations when a particular forecast is made, whereas
the marginal distribution p(f) specifies the relative
frequency of use of the various possible forecasts.

The distributions p(x|f) and p(f) relate to two dis-
tinct characteristics of the forecasts, calibration and
refinement, both of which are of interest for verification
purposes. Specifically, forecasts are said to be perfectly
calibrated (or completely reliable) if E(x|f) = f for
all f, where E(x|f) is the expected (or mean) value of
the conditional distribution p(x|f). Thus, a temper-
ature forecasting system is perfectly calibrated if, for
each forecast value f, the mean observed temperature
is equal to f. The marginal or predictive distribution
of the forecasts, p(f), relates to the refinement (or
sharpness) of the forecasts. A temperature forecasting
system that produces the same forecast on each occa-
sion is completely unrefined. Complete refinement is
difficult to define in the case of such nonprobabilistic
forecasts. However, for perfectly accurate forecasts
(which are also perfectly refined), p(f) is necessarily
identical to the marginal distribution of the observa-
tions, p(x).

In the second factorization, p(f, x) is factored into
conditional distributions of the forecasts given the ob-
servations, p(f|x), and the marginal distribution of
the observations, p(x). The conditional probabilities
that constitute p(f | x) are generally referred to as like-
lihoods, since they indicate the “likelihood” that a par-
ticular forecast is associated with a given observation.
For a sample of data, these likelihoods are estimated
by the corresponding conditional relative frequencies.
Analogously, the marginal distribution p(x) specifies
the probability of occurrence of the respective obser-
vations. Thus, p(x) consists of the sample climatolog-
ical probabilities (or sample base rates).

The likelihoods, p(f| x), indicate the extent to which
a forecast discriminates among the various values of
x. For a temperature forecast f, if the values of the
likelihoods are very similar for different values of x,
then the forecast is not very discriminatory—in the
extreme, when p(f|x) is the same for all x, the forecast
is not at all discriminatory. When the likelihoods are
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very different for different values of x, the temperature
forecast is much more discriminatory; in particular, it
is perfectly discriminatory (for each f) when p(f|x)
equals zero for all values of x except one. Note that
the marginal distribution of the observations, p(x), is
the only component of either factorization that does
not involve the forecast f in any way. Thus, it is a
characteristic of the forecasting situation, rather than
of the forecasting system or forecaster. The character-
istic of concern in this case is uncertainty, which is
related to the variability of the observations. Forecast-
ing situations involving a narrow range of temperature
values and/or a peaked distribution are characterized
by relatively little uncertainty, and thus are relatively
less difficult situations in which to forecast. In contrast,
forecasting situations involving a wide range of tem-
perature values and/or a fairly uniform distribution
are characterized by relatively great uncertainty, and
thus are relatively more difficult situations in which to
forecast.

It is evident that the individual components in the
two factorizations measure different characteristics of
forecasting systems and / or forecasting situations. This
fact implies that all four components will be of interest
for verification purposes. For a discussion of the rela-
tionships between the factorizations—and their re-
spective components—see MW87.

b. Specific methods

The framework described in section 2a provides a
rational basis for a diagnostic approach to forecast ver-
ification. This approach is “diagnostic”” in the sense
that it is concerned primarily with identifying and de-
scribing, in a quantitative manner whenever possible,
the basic characteristics of the forecasts, the observa-
tions, and their relationship. Here, a “verification
method” is any mathematical or statistical measure or
pictoral or graphical display that provides insight into
or summarizes one or more of these basic character-
istics. In assembling the verification methods to be de-
scribed in this section, the application to nonproba-
bilistic forecasts of a continuous variable has been kept
in mind.

Three specific classes of diagnostic verification
methods are identified in this section: 1) the basic dis-
tributions themselves; 2) summary measures of these
distributions; and 3) traditional performance measures
and their decompositions. First, since the joint, con-
ditional, and marginal distributions describe the fun-
damental statistical characteristics of the forecasts and/
or observations, they necessarily constitute a poten-
tially useful set of verification methods. Of course, rec-
ognition of the fact that these distributions represent
important sources of information in the context of
forecast verification is hardly a new concept. For ex-
ample, the results of verification studies involving
forecasts of discrete variables or events are often sum-
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marized in the form of unconditional or conditional
contingency tables (e.g., Brier and Allen 1951). More-
over, indirect use is frequently made of (unconditional )
contingency tables in- computing performance mea-
sures for such forecasts (e.g., the fraction or percent
correct). However, the fundamental role of these dis-
tributions in forecast verification has generally not been
recognized explicitly, and they have seldom if ever been
considered in the case of forecasts of continuous vari-
ables such as temperature. Nevertheless, we believe that
the conditional distributions p(x|f) and p(f}x), since
they necessarily describe the relationship between f
and x, can provide especially valuable insights into
forecasting performance. This class of methods will be
referred to as the basic distributions.
Notwithstanding the fundamental information vis-
a-vis the forecasts and observations—and their rela-
tionship—that is contained in the basic distributions,
it is also desirable to summarize the most important
features of these distributions—and thereby forecast
quality—in terms of a few specific measures or param-
eters. The features of interest include such distribu-
tional characteristics as central tendency, variability,
and asymmetry. In choosing such parameters, it seems
reasonable to focus at least initially on measures directly
related to the basic distributions themselves. Tradi-
tional choices for such summary measures include the
mean as a measure of central tendency and the variance
(or standard deviation) as a measure of variability.
Moreover, the correlation coefficient represents a tra-
ditional measure of the overall association (or linear
relationship) between the forecasts and observations.
In assessing the statistical characteristics of the basic
distributions, it may also be desirable to consider mea-
sures that do not require assumptions regarding the
shapes of such distributions (e.g., symmetry, normal-
ity). For example, it is frequently useful to determine
various quantiles of the marginal and/or conditional
distributions. Quantiles employed in this paper include
the 0.50th quantile (median), the 0.75th and 0.25th
quantiles (upper and lower quartiles, respectively), and
the 0.90th and 0.10th quantiles. In situations in which
the basic distributions are asymmetric or otherwise
nonnormal, the median and interquartile range (the
difference between the upper and lower quartiles ) might
be more appropriate measures of central tendency and
variability, respectively, than the mean and standard
deviation. For a relatively “well-behaved” variable such
as temperature—for which the distributions of forecasts
and observations might be reasonably symmetric and
even approximately normal (jointly, conditionally,
and/or marginally )—the difference between the mean
and median generally would be quite small. To assess
the asymmetry of distributions in this paper, we com-
pute a measure that consists simply of the difference
between the 0.90th quantile minus the median and the
median minus the 0.10th quantile. This measure is
zero for a symmetric distribution and (generally ) non-
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zero for an asymmetric distribution. We will refer to
the class of (traditional and nontraditional ) measures
of the characteristics of the basic distributions as the
summary measures. '

In interpreting the summary measures of the con-
ditional distributions, p(x|f) and p(f|x), we will make
use of simple linear regression models in which the
forecasts are regressed on the observations and vice
versa. These regression models are described in detail
in appendix A. The models provide “standards of ref-
erence,” which can be used to evaluate the extent to
which the observations given the forecasts and the
forecasts given the observations are conditionally un-
biased. As noted in appendix A, the phrase “condi-
tionally unbiased” has the same meaning as perfectly
calibrated (or completely reliable). It is demonstrated
in appendix A that, from the perspective of the regres-
sion model associated with the distributions p(x|f),
conditionally unbiased forecasts are optimal. However,
forecasts that are conditionally unbiased in this sense
will necessarily (unless they are perfect) be condition-
ally biased from the perspective of the regression model
associated with the distributions p(f|x). Moreover,
this latter model prescribes the amount of conditional

. bias that is consistent with the overall degree of asso-
ciation between the forecasts and observations (as
measured by the correlation coeflicient).

It is also desirable to identify some means of assessing
the extent to which the forecasts discriminate among
the observations, as characterized by the conditional
distributions p(f|x). Recall that a forecast is discrim-
inatory if, for fixed f, p(f|x) is different for different
values of x, whereas it is not at all discriminatory if
p(f1x) is the same for all x (see section 2a). To evaluate
qualitatively the amount of discrimination provided
by a set of forecasts, we can examine and compare
these conditional distributions for different values of
x. If the forecasts are discriminatory, then the p(f|x)
should be quite well separated, whereas if the forecasts
are not very discriminatory, then the p(f| x) will over-
lap to a considerable degree. As a quantitative measure
of the degree of discrimination between two observa-
tions (e.g., x; and x;) provided by the forecast (1), we
can use the likelihood ratio (LR ), where LR(f; x;, X;)
= p(f1x:)/p(f1x;). This ratio is close to 1 in the case
of very little discrimination, and it is exactly 1 in the
case of no discrimination. Moreover, as discrimination
increases, the value of LR will differ increasingly from
1. A measure of discrimination based on the likelihood
ratio is defined in appendix B.

Calculation of certain familiar measures of perfor-
mance can also-be quite useful. The traditional per-
formance measures considered here include the mean
(algebraic) error (ME), the mean square error (MSE),
and the skill score (SS). These measures are defined
in appendix C. The ME is a measure of overall (or
systematic; or unconditional ) bias, the MSE is a mea-
sure of accuracy, and the SS is a measure of skill (i.e.,
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relative. accuracy). This class of methods will be re-
ferred to as the performance measures. ‘

The above-mentioned performance measures are
currently computed in conjunction with many verifi-
cation programs. In addition, however, it is possible to
decompose the MSE, as well as the SS based on the
MSE, into terms that measure other characteristics of
the forecasts and observations. Mathematical expres-
sions for two such decompositions are given in appen-
dix D. From these expressions and the interpretations
of the respective terms, it is evident that the two de-
compositions provide additional insights into basic
characteristics of forecasting performance.

Finally, an important feature of the diagnostic ap-
proach to forecast verification—and its associated body
of methodology——is the use of graphical displays of the
results. As the results presented in section 3 demon-
strate, displays such as bivariate histograms, box plots,
likelihood diagrams, and even simple x-y plots provide
a means of summarizing information concerning basic
aspects of forecast quality in an efficient yet transparent .
manner. These displays can be particularly useful in
conjunction with the evaluation of the basic distribu-
tions and the associated summary measures. Specifi-

_cally, such displays can greatly facilitate the interpre-

tation and enhance the usefulness of the results of ver-
ification studies.

The methods of diagnostic verification employed in
this paper are summarized in Table 1. In this table the
methods are classified first by probability distribution
and then by distributional or performance character-
istic. The types of displays used to depict these methods
are also indicated.

¢. Computation of diagnostic measures

"Computation of the diagnostic verification measures
described in section 2b—and to be employed and il-
lustrated in section 3—is relatively easy. In fact, most
of these measures can be computed by using common
statistical software packages on a mainframe computer,
minicomputer, or microcomputer. The graphical pro-
cedures used to prepare insightful displays of verifi-
cation data rely for the most part on simple x—y plotting
routines, which are included in most statistical’ or
graphical software packages. More complex graphical
displays such as bivariate histograms and box plots can
also be prepared by selected software packages of this

_type. Thus, most of the computations illustrated here

can be accomplished without requiring the creation of
new software. Of course, in practice it may be necessary
to modify existing software or to formulate new sub-
routines that will, for example, automatically perform
diagnostic verification computations on a regular basis.

3. Application to NWS temperature forecasts

Some results of an application of the diagnostic ap-
proach to forecast verification—and its associated
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TABLE 1. Methods of diagnostic verification, classified by probability distribution and distributional or performance characteristic.

Characteristic

Measure

Display

(1) Joint Distribution: p(f, x)

correspondence
association

accuracy

skill

(2) Marginal Distributions: p(f) and p(x)

central tendency

variability

asymmetry
extremes

bias

(3) Conditional Distributions: p(x/f)

conditional central tendency
conditional variability
conditional asymmetry
conditional extremes

conditional bias (reliability)

(4) Conditional Distributions: p(f/x) -

conditional centrat tendency
conditional variability
conditional asymmetry

conditional extremes

joint distribution
correlation coefficient

(a) mean square error (MSE)

(b) root mean square error (RMSE)

bivariate histogram
line diagram

line diagram
line diagram

skill score (SS) line diagram
(a) mean line diagram
(b) median box plot
(a) variance line diagram
(b) interquartile range box plot
quantiles box plot
extreme quantiles box plot

(a) mean error (ME)
(b) component of SS

conditional median
conditional interquartile range
conditional quantiles
conditional extreme quantiles

(a) conditional median
(b) component of SS

conditional median
conditional interquartile range
conditional quantile

conditional extreme quantiles

line diagram
line diagram

conditional quantile diagram
conditional quantile diagram
conditional quantile diagram
conditional quantile diagram

conditional quantile diagram
line diagram

conditional quantile diagram
conditional quantile diagram
conditional quantile diagram

conditional quantile diagram

discrimination

(a) conditional distributions
(b) discrimination (DIS)

conditional distributions diagram
line diagram

methodology—are presented in this section. These re-
sults are based on an analysis of a sample of temper-
ature forecasts for Minneapolis, Minnesota. However,
the purpose of describing this particular application is
not to investigate the characteristics of temperature
forecasts for a specific location. Instead, the objectives
here are (a) to present some methods that can be used
to identify and compare various basic dimensions of
forecast quality within the overall context of diagnostic
verification and (b) to demonstrate by example the
kinds of information about forecasts, observations, and
the relationship between forecasts and observations that
can be obtained by adopting this approach to forecast

verification. Thus, the results presented here do not
constitute a comprehensive verification of these fore-
casts. Rather, they represent the kinds of results—and
modes of presentation of these results—that might be
employed in a detailed diagnostic verification of fore-
casts of this type. :

a. Data

The data used here to illustrate the diagnostic ap-
proach to forecast verification are objective and sub-
jective temperature forecasts, and the corresponding
observed temperatures for Minneapolis, Minnesota, for
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FiG. 1. Bivariate histograms of joint distributions of forecasts and observations [p(f, x)]. (a)
24-h objective forecasts in the winter season. (b) 24-h subjective forecasts in the winter season.
(c) 24-h objective forecasts in the summer season. (d) 24-h subjective forecasts in the summer
season. Values of p(f, x) for which f = x are indicated by open circles to facilitate identification.

See text for additional details.

the period April 1980-March 1986. These data were
obtained from the NWS Public Weather Verification
Data Archive (see Carter and Polger 1986). The ob-
jective forecasts were produced by the model output
statistics system (e.g., Glahn 1985), whereas the sub-
jective forecasts were formulated by NWS forecasters.
It should be noted that the objective forecasts generally

were available to the forecasters prior to the formula-

tion of their subjective forecasts. Both types of forecasts
were prepared twice a day (cycle times of 0000 and
1200 UTC) for four lead times (approximately 24, 36,
48, and 60 h in advance) for maximum and minimum

temperatures. Attention is focused in this paper pri-
marily on the maximum temperature forecasts asso-
ciated with the 0000 UTC cycle time for the 3-month
winter (December, January, and February) and sum-
mer (June, July, and August) seasons. To conserve
space, results are presented in many cases only for the
winter season and for the 24-h lead time.

b. Basic distributions and summary measures

1) Joint distribution, p(f, x). Examination of the
joint distribution p(f, x) provides overall insight into
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FIG. 1. (Continued)

the relationship between the forecasts and observations.
This distribution can be depicted in several different
ways: for example, graphically in the form of a bivariate
histogram or numerically in the form of a contingency
table. Fig. 1 contains bivariate histograms for the Min-
neapolis 24-h maximum temperature forecasts for the
winter and summer seasons. In formulating the joint
distributions shown in these diagrams, the raw data
have been assigned to 5°F categories (i.e., 3°~7°F, 8°-
12°F, 13°-17°F, etc.). The histograms are depicted
with the forecast value (/) on the x-axis, the observed
value (x) on the y-axis, and the joint relative frequency
[p(f, x)] on the z-axis. The diagonal 45° line in the
Xx-y plane represents one-to-one correspondence be-
tween the forecast and observed categories, namely,
forecasts with errors <4°F. Thus, off-diagonal “ele-

ments” of p(f, x) correspond to forecasts that are as-
sociated with even larger errors.

Bivariate histograms can provide qualitative (and
even quasi-quantitative ) information regarding various
characteristics of the joint and marginal distributions,
such as central tendency, variability, and symmetry,
as well as information concerning differences in these
characteristics among types of forecasts (e.g., objective/
subjective ), seasons, and lead times. For example, the
joint distributions shown in Fig. 1 appear to be quite
symmetric about the 45° line. That is, the largest joint
relative frequencies are associated with categories for
which f = x; otherwise, the observations are approx-
imately equally likely to be greater or less than the
forecasts. Comparison of the diagrams for winter and
summer suggests that the primary difference between
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the distributions for the two seasons relates to the
number of temperature categories with nonzero relative
frequencies. This number is much smaller in symmer
than in winter (i.e., the range of maximum tempera-
tures at Minneapolis is evidently much greater in winter
than in summer). Additional information could be
obtained from the bivariate histograms by careful ex-
amination and comparison of specific “sectors” of the
respective distributions. '

The correlation coefficient is a traditional measure
of the degree of (linear ) association between two quan-
tities, and it represents a quantitative summary mea- _
sure of the joint distribution. It can be used to.compare
the quality of different types of forecasts, as well as to
compare forecasts for different seasons or lead times.
(However, it should be kept in mind that this measure
_ ignores any conditional or unconditional biases in the
forecasts—see section 2b and appendix D.) In the case
of the Minneapolis maximum temperature forecasts,
a line diagram depicting the correlations between the
forecasts and observations for all lead times (Fig. 2)
reveals that the degree of association between the fore-
casts and observations decreases with increasing lead
time. Differences between the correlation coefficients
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FIG. 2. Correlation coefficients (7/,) between forecasts and obset-

Vaﬁoqs as a function of lead time for (a) the winter season and (b)"
the summer season (f;: objective forecasts, f;: subjective forecasts).
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F1G. 3. Box plots of marginal distributions of forecasts and obser-
vations [p(f) and p(x), respectively] for the 24-h lead time in the
winter season (f;: objective forecasts, f;: subjective forecasts).

for the two types of forecasts are generally small, with
the correlations for the subjective forecasts in some
cases exceeding (by a small margin) the correlations
for the objective forecasts. Comparison of the corre-
lations for the two seasons indicates that the forecasts
and observations are more strongly associated in winter
than in summer.

2) Marginal distributions, p(f) and p(x). Box plots
provide a convenient means of summarizing the mar-
ginal distributions of the forecasts and observations (see
Fig. 3). These plots describe distributional character-
istics such as central tendency, variability, and sym-
metry. Moreover, box plots facilitate the comparison
of these characteristics among distributions. Traditional
practices in forecast verification seldom extend beyond
the comparison of the means of the respective distri-
butions.

The horizontal line inside each box designates the
median (i.e., the 0.50th quantile), an alternative mea-
sure of central tendency. Upper and lower quartiles
(i.e., the 0.75th and 0.25th quantiles, respectively) of
the distribution are represented by the top and bottom
of the box, and the difference between them—the
length of the box—is the interquartile range (IQ), an
alternative measure of variability. Maximum and
minimum values, displayed at the ends of the “whis-
kers,” as well as the 0.90th and 0.10th quantile values,
are estimates of the extremes of the distribution. The
difference between the 0.90th and 0.10th quantiles is
also a measure of variability. In addition, information
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concerning the degree of asymmetry of such a distri-
bution is provided by the shape of the box plot.

For the Minneapolis temperature data, the box plots
for the 24-h forecasts in the winter season (Fig. 3) in-
dicate that the distributions are quite symmetric. In
particular, the upper and lower whiskers are approxi-
mately equal in length and the two halves of the boxes
are approximately the same size. Small differences be-
tween the respective medians suggest that the forecasts
may be slightly biased. In addition, the observed tem-
peratures exhibit somewhat greater variability than that
exhibited by the objective and subjective temperature
forecasts, as indicated by the lengths of the boxes (i.e.,
the 1Qs) and the differences between the 0.90th and
0.10th quantile values.

Marginal distributions can also be described in terms
of traditional summary measures, such as the mean
and variance (or standard deviation ). Since the forecast
and observed temperature distributions appear to be
fairly symmetric, the use of such measures is not un-
reasonable. In the cases of other weather variables (e.g.,
precipitation, wind speed) for which the distributions
are unlikely to be symmetric, more “robust” summary
measures such as the median and IQ would be more
appropriate (such measures are robust if they are not
unduly influenced by a few outlying values).

These traditional statistics can also be depicted in
graphical form, as in Figs. 4 and 5, to facilitate com-
parisons among lead times and between the objective
and subjective forecasts. Relatively large differences
between the mean values of the forecasts and obser-
vations are evident in some cases. For example, the
means of the objective forecasts for Minneapolis in
winter (Fig. 4) are about 2°F higher than the means
of the observed temperatures at each lead time, which
suggests that the objective forecasts are appreciably
biased overall. On the other hand, the means of the
corresponding subjective forecasts are quite similar to
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FIG. 4. Means of the forecasts and observations ({f) and {x),
respectively) as a function of lead time for the winter season (f,:
objective forecasts, f;: subjective forecasts).
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FIG. 5. Standard deviations of the forecasts and observations (s
and s,, respectively) as a function of lead time for the winter season
(f>: objective forecasts, f;: subjective forecasts).

the mean observed temperatures, indicating that these
forecasts are relatively unbiased. Comparison of the
standard deviations of forecast and observed temper-
atures (Fig. 5) suggests that in winter the standard de-
viations of the two types of forecasts are quite similar.
However, the observed temperatures exhibit consid-
erably more variability than the forecast temperatures.

3) Conditional distributions, [p(x|f)]. The condi-
tional distributions provide various kinds of infor-
mation regarding the relationship between the forecasts
and observations, including information concerning
several dimensions of forecast quality. This information
is generally not considered in traditional forecast ver-
ification studies. Quantiles—in particular, medians—
of the conditional distributions provide information
about conditional bias (or calibration ). These quantiles
also describe the way in which the variability in the
observations changes as a function of the forecast. Spe-
cifically, the variability of the conditional distributions
can be measured quantitatively using conditional val-
ues of the interquartile range. Moreover, it should be
noted that these conditional interquartile range values
are inversely related to (conditional) forecast accuracy.
Finally, the symmetry of the distributions around the
conditional medians can be measured in the manner
defined in section 2b. Diagrams displaying these char-
acteristics of the conditional distributions of the ob-
served temperatures given the 24-h temperature fore-
casts for the winter season at Minneapolis are presented
in Fig. 6. Results for other lead times and for the sum-
mer season are qualitatively similar to those for the
24-h lead time in the winter season.

The conditional quantile plots in Figs. 6a and 6b
display various quantiles of the conditional distribu-
tions of observed maximum temperature given forecast
maximum temperature. These diagrams include “run-
ning” values of the 0.10th, 0.25th, 0.50th (median),
0.75th, and 0.90th conditional quantiles. The respective
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sets of quantile values have been smoothed using a
three-point smoothing algorithm called hanning (Tu-
key 1977). The 45° line in the conditional quantile
plots (the line of one-to-one correspondence between
forecasts and observations) is included for purposes of
comparison with the median values. For these tem-
perature forecasts, it is reasonable to assume that de-
viations of the conditional medians from the 45° line
indicate that the forecasts are conditionally biased.
Histograms showing the frequency with which each
forecast was used [i.e., p(f)] are presented along the
x-axis. These frequencies are important for evaluating
the credibility of the conditional quantiles. That is, the
conditional quantile estimates are generally less cred-
ible for small subsamples (i.e., in the tails or extremes
of the distribution of the conditioning variable) than
they are for large subsamples (i.e., near the center of
the conditioning distribution).

The diagrams in Fig. 6 provide a variety of infor-

mation about the conditional distributions, p(x|f),
and they permit comparisons between the objective
and subjective forecasts. For example, the objective
forecasts (Fig. 6a) exhibit a tendency toward overfore-.
casting, as indicated by the location of the conditional
median line somewhat below the 45° line. Specifically,
in the case of an objective forecast of 10°F in winter,
the median observed temperature is 8°F. On the other
hand, the subjective forecasts appear to be relatively
unbiased over the entire range of forecast values
(Fig. 6b).

The marginal frequency distributions of the forecasts
presented in Figs. 6a and 6b provide information about
the central tendency, variability, etc., of the distribu-
tions of forecasts. In addition, they indicate those ranges
of forecast temperatures for which variations in the
conditional quantiles may simply be an artifact of small
subsample sizes. For the Minneapolis data, the mar-
ginal distributions in some cases (e.g., see Fig. 6b) ap-
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pear to exhibit more than one mode (or peak). Oth-
erwise, these distributions generally are quite symmet-
ric, as was suggested by the box plots in Fig. 3. As
expected, the frequencies associated with high and low
forecast values are generally smaller than those asso-
ciated with forecasts in the middle of the range of
values.

The conditional IQ diagram (Fig. 6¢) indicates how
the variability in the observations changes as a function
of the numerical value of the forecast. For example, in
winter for Minneapolis, the conditional IQ values for
the subjective forecasts decrease from about 10°F for
very low forecast temperatures to less than 4°F for
forecasts around 30°F, and then they increase again
for forecasts of higher temperatures. Thus, subjective
forecasts of maximum temperature in the vicinity of
30°F are associated with less variability than are fore-
casts of higher or lower maximum temperatures. In
addition, differences in these values between the ob-
jective and subjective forecasts can be evaluated using
this diagram. For these forecasts such differences appear
to be relatively small.

Patterns associated with the conditional asymmetry
statistic can indicate how the shapes of the conditional
distributions change as a function of the forecast. For
example, the asymmetry values in winter (Fig. 6d) are
negative for forecasts between about 20° and 30°F,
with the values being more strongly negative for the
objective forecasts than for the subjective forecasts. This
result suggests that observations associated with fore-
casts in this range tend to have somewhat negatively
skewed distributions, a fact that is supported by ex-
amination of the conditional quantiles (Figs. 6a and
6b); i.e., most observations associated with forecasts
in this range represent relatively high temperatures, al-
though occasionally much lower temperatures are ob-
served.

4) Conditional distributions, p(f|x). The likeli-
hood-base rate factorization leads to another set of
conditional distributions. As in the case of the distri-
butions p(x|f), the conditional distributions based on
the likelihood-base rate factorization can be described
using various quantiles, the interquartile range, and
the measure of asymmetry defined previously. In ad-
dition to these statistics, it is of interest in the case of
p(f1x) to consider the relative amount of discrimi-
nation provided by the forecasts, as described in section
2b. Information concerning all of these characteristics
of the conditional distributions p(f|x) for the 24-h
forecasts of maximum temperature for Minneapolis in
the winter season is presented in Figs. 7-9. Equality of
forecasts and observations in the conditional quantile
diagrams is once again represented by the 45° line.
Moreover, these diagrams contain a line (the heavy
dashed line) defined by the linear regression of f on
x. In the case of p(f| x), this line is more appropriate
than the 45° line as a standard of reference for com-
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parison with the conditional medians, for reasons that
were discussed in section 2b (see also appendix A).

In the conditional quantile diagrams (Figs. 7a and
7b) the orientation of the conditional median line rel-
ative to the regression line indicates the degree to which
the regression model represents the relationship be-
tween the observations and the conditional medians
of the forecasts. In this case, the running conditional
medians appear to be quite well approximated by the
regression lines. It should not be overlooked, however,
that this correspondence necessarily implies that the
conditional mean temperature forecast has a tendency
to be larger (smaller) than the observed temperature
for relatively low (high) observed temperatures. Thus,
a conditional bias exists in the sense that E(f|x) # x
for all x.

Differences in the variability and asymmetry of the
forecasts given particular observations can be compared
using diagrams such as those presented in Figs. 7¢ and
7d. Little systematic variation in conditional IQ is ap-
parent in these data for Minneapolis. The asymmetry
diagrams suggest that the conditional distributions of
forecast temperatures given observed temperatures are
relatively symmetric for most values of x.

To investigate the ability of the forecasts to discrim-
inate among the observations, we have examined the
conditional distributions p(f| x) for different values of
the observed temperature. Examples of these distri-
butions for the 24-h objective and subjective forecasts
in the winter season are presented in Figs. 8a and 8b,
respectively. In preparing these figures we have chosen
three representative values of x: the lower quartile, the
median, and the upper quartile of the marginal distri-
bution p(x) (for the Minneapolis data, these observed
temperatures are 14°, 25°, and 34°F, respectively).
Moreover, to reduce the sampling variability of the
results, all forecasts and observations associated with
5°F categories of observed temperature centered on
the quantiles have been considered in defining the con-
ditional distributions. In addition, we have smoothed
these distributions using hanning,.

The three conditional distributions (corresponding
to the three 5°F categories of x) depicted in Fig. 8 are
indicative of a substantial degree of discrimination, as
reflected by the relatively modest amount of overlap
among the distributions. In particular, the values of
p(f|x), for fixed f, are quite different for different val-
ues of x for both types of forecasts. Careful examination
of these (and other similar) displays suggests that the
subjective forecasts exhibit a somewhat greater degree
of discrimination than the objective forecasts.

This conjecture regarding the relative amount of
discrimination provided by the objective and subjective
forecasts can be investigated using the quantitative
measures of discrimination defined in appendix B.
Values of the discrimination measure DIS(f) [see
(B2)] are depicted in Fig. 9 as a function of f. These
values have also been smoothed using hanning. Com-
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detalls

parison of the curves for the objective and subjective
forecasts reveals that the latter do indeed exhibit greater
discrimination than the former for a majority of the
forecast values. Moreover, the overall quantitative
measure of discrimination [DIS in (B3)] for the 24-h
lead time yields values of 1.446 for the objective fore-
casts and 1.479 for the subjective forecasts. Comparison
of these values with the values of DIS for the 48-h lead
time—1.404 for the objective forecasts and 1.401 for
the subjective forecasts—reveals that (as expected)
discrimination decreases as lead time increases.

¢. Performance measures

As indicated in section 2b, traditional performance
measures represent an important class of diagnostic
verification methods. Moreover, these measures essen-
tially are functions of summary.statistics that describe

the joint, conditional, and marginal distributions (see
appendix C). In addition, the MSE and the SS can be
decomposed into terms that are based on the means
and variances of the forecasts and observations and on
the correlation between the forecasts and observations -
(see appendix D).

Performance measures can be displayed in simple
line diagrams, as in Fig. 10 for the Minneapolis winter
maximum temperature data. These diagrams facilitate
comparisons among lead times and between the ob-
jective and subjective forecasts. For example, the sub-
jective forecasts are evidently somewhat more accurate
than the objective forecasts, as indicated by the differ-
ences in RMSE values for the two types of forecasts.
Moreover, accuracy decreases with increasing lead
time. The ME values depict the bias in the forecasts,
either in terms of overforecasting (positive bias) or in
terms of underforecasting (negative bias). In the case



DECEMBER 1989 MURPHY, BROWN AND CHEN 497
0,30 T T Y T T T T T T 250 T T T T T T T T T
(a) ~---plfplx=14) _ —— DIS(f,) ]
0'25 essseces . p(fo|x:25) 2'25 ———— DIS(f:)
__ 020+ — plfolx=34) -4 __ 200} -
> ~—
“° 0151 " 1 @ 175f
a A o
010 T . 150
1 1 %
005 |- g . 1.25}
0 A "-_ oo, 100
0 10 20 30 40 50 ° 0 i0 20 30 40 50
o
Forecast temperature (°F) Forecast temperature (°F)
0.30 T T Tt FIG. 9. Discrimination score DIS(f) as a function of f for the
0.25 ( b) -—-- plfg Ix=14) | quec}ivehforepasts (f,) and subjective forecasts ( f;) for the 24-h lead
. p(fsh = 25) . time in the winter season.
_. 020} — plfslx=34) -
=
w2 015+ - appropriateness of the regression model (described in
=S N section 2b) as a description of the conditional distri-
010 N ’:' \ : —~  bution of observations given forecasts. In the case of
! \‘_..-' these forecasts, the regression model apparently pro-
005~/ k |  vides a good fit to the data because this term is quite
0 A et NS \ | small for both the objective and subjective forecasts
0 10 20 30 40 50 for all lead times (Table 3).

Forecast temperature (°F)

F1G. 8. Conditional distributions of forecasts given observations
[p(f|x)] for lower quartile (x = 14°F), median (x = 25°F), and
upper quartile (x = 34°F) of p(x) for the 24-h lead time in the winter
season: (a) objective forecasts, and (b) subjective forecasts. See text
for additional details.

of the forecasts for Minneapolis, the ME values in win-
ter suggest that the objective forecasts are appreciably
biased overall, with an ME value of about 2°F for all
lead times.

The decompositions of the MSE and the SS can
identify the relative contributions of various terms to
the overall accuracy and skill of the forecasts. These
terms can also be compared among lead times and
between the objective and subjective forecasts. The
values of the terms in these decompositions for the
Minneapolis forecasts are shown in Tables 2 (MSE)
and 3 (SS). In this case, it is apparent that the terms
increase or decrease as a function of lead time in a
manner that generally would be expected. For example,
the factor 2sys,7y, in Table 2—an indicator of the co-
variability or degree of linear association between the
forecasts and observations—decreases as lead time in-
creases. Bias also makes a larger contribution to the
MSE for the objective forecasts than to the MSE for
the subjective forecasts, as indicated by the respective
magnitudes of the ({f) — {x))? term in Table 2. It
is of interest to note that the second term in the de-
composition of the SS is essentially a measure of the

4. Summary, discussion, and conclusion

In this paper we have described a diagnostic ap-
proach to forecast verification. This approach is based
on a general framework for forecast verification and is
designed to provide detailed insight into the basic
characteristics of the forecasts, the observations, and
their relationship. A body of diagnostic verification
methodology has been presented and the utility of these
methods has been illustrated by an application involv-
ing a sample of NWS temperature forecasts.
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FIG. 10. Performance measures (ME and RMSE) as a function
of lead time for the winter season (f;: objective forecasts, f;: subjective
forecasts).
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TABLE 2. MSE and terms in its decomposition for the winter season (/,: objective forecasts, f;: subjective forecasts).
See text for additional details.
Lead time Type of Sample size

(h) forecast (n) MSE* W)= &P 57 52 28781
5 249 3.2 148.6 302.0

24 fi 417 18.0 0.0 154.0 174.9 3108
1 : 344 5.8 149.3 304.8

36 g 405 26.9 0.1 154.4 184.1 3116
S 339 44 143.8 292.0

48 i 416 284 0.0 137.9 1778 287.4
5 49.6 5.3 129.8 268.2

60 i 397 40.5 0.0 129.6 1827 271.8

* MSE = ({f) = (DF + 52 + 52 — 287875

The joint distribution of forecasts and observa-
- tions—and its factorizations into conditional and
marginal distributions—represent the basic elements
of the general framework, and these distributions con-
stitute the first (and fundamental) class of diagnostic
verification methods. Summary measures of these dis-
tributions represent the second class of verification
methods, and they include both “standard” measures
of central tendency and variability (e.g., the mean and
standard deviation ) as well as robust measures of these
and other characteristics (e.g., the median and inter-
quartile range ) based on quantiles of the distributions.
Performance measures—such as the ME, MSE (or
RMSE), and SS-—constitute the third class of diag-
nostic verification methods. This latter class also in-
cludes decompositions of measures such as the MSE
and SS that provide quantitative information concern-
ing specific characteristics of the forecasts and/or ob-
servations. Finally, in the interpretation of the sum-
mary and performance measures, we found it useful
to appeal to simple linear regression models in which
the observations are regressed on the forecasts and vice
versa.

With regard to the insights provided by the diagnostic
verification methods, the joint and marginal distribu-
tions contribute both overall insights into the individual
and joint “behavior” of the forecasts and observations, .
as well as detailed insights into basic characteristics of
the forecasts, observations, and their relationship.
Moreover, the summary measures yield quantitative
information concerning these fundamental character-
istics. For example, the correlations presented in Fig.
2 illustrate the decrease in the level of association be-
tween forecasts and observations with increases in lead
time. Such insights and information generally cannot
be obtained from traditional verification methods.

The conditional distributions play a special role in
diagnostic verification because they describe the rela-
tionship between the forecasts and observations. In
particular, these distributions provide detailed insights
into both conditional behavior and performance,
through characteristics such as conditional bias and
conditional variability. For example, the conditional
IQ values presented in Fig. 6 suggest that the distri-
butions of observations associated with the subjective
forecasts are least variable for maximum temperature

TABLE 3. SS and terms in its decomposition for the winter season (f,: objective forecasts, f;: sub_]ecuve forecast',)
See text for additional details.

Lead time Type of Sample size 2 i

() forecast (n) Ss* T [rs — (sy/s:)P [KS) = x)ss P

24 o 417 0.858 0.876 0.000 0.018
S 0.897 0.897 0.000 0.000
Lo 0.813 0.846 0.001 0.031

36 S 405 0.854 0.854 0.000 0.000

48 Jo 416 0.809 0.834 0.000 0.025
B 0.840 0.843 0.001 0.000
Jo '0.728 0.759 0.001 0.029

50 Js 397 0.778 0.780 0.002 0.000

*SS=rk—[rx—

/5P ~ [ = Vs~
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forecasts around 30°F. Once again, summary measures
of the distributions yield quantitative information re-
garding these (conditional ) characteristics.

Performance measures are used to obtain quanti-
tative information concerning overall dimensions of
forecast quality such as bias, accuracy, and skill. In
addition, these measures can (in some cases) be de-
composed into measures of other characteristics of
performance, such as conditional bias (or calibration).
The terms in these decompositions are functions of
summary measures of the joint and marginal distri-
butions of forecasts and observations.

Diagnostic verification, as described and illustrated
in this paper, focuses on the fundamental aspects of
forecast quality. In particular, it can identify the situ-
ations—defined in terms of individual or joint values
of the forecasts and observations—in which forecasting
performance may be especially weak or strong. Iden-
tification of such situations is obviously an essential
first step in the process of improving forecast quality.
Moreover, this knowledge can provide modelers or
forecasters (who presumably may be familiar with the
meteorological conditions that lead to such situations)
with clues as to ways in which forecasts would be im-
proved. For example, in the case of the objective max-
imum temperature forecasts for Minneapolis in the
winter season, examination of the conditional distri-
butions p(x|f) (see Fig. 7a) revealed that the forecasts
were biased for high and low forecast temperatures but
relatively unbiased for intermediate forecast temper-
atures. To modelers familiar with the numerical-sta-
tistical models on which such forecasts are based, these
results might provide clues as to ways in which these
models might be improved. Of course, supplementary
diagnostic studies of a meteorological nature would also
be desirable to provide further insight into the atmo-
spheric conditions under which such biases occur and /
or the reasons for their occurrence.

In the context of subjective weather forecasting,
forecasters generally exhibit individual strengths and
weaknesses. Diagnostic verification offers the possibility
of obtaining more detailed information concerning in-
dividual distributional and performance characteristics
than is usually available from traditional verification
programs. Such information, when provided to fore-
casters as feedback, can have a beneficial impact on
forecast quality (e.g., see Murphy and Daan 1984).

In this paper we have focused on diagnostic verifi-
cation as a means of providing detailed information
to modelers and forecasters, in order to improve fore-
casting performance. However, the information pro-
duced by the diagnostic approach to forecast verifica-
tion should also be of considerable importance to actual
and potential users of forecasts. Such individuals need
quantitative information concerning the basic dimen-
sions of forecast quality—information that generally
is not provided by traditional verification methods—
in order to make optimal use of the forecasts.
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Notwithstanding the apparent benefits of the veri-
fication methods described in this paper, we believe
that it will be possible to develop even more useful
forms of diagnostic verification in the future. For ex-
ample, considerably greater use could be made of
methods of exploratory data analysis (e.g., Graedel and
Kleiner 1985), and such methods might be especially
valuable in applications involving probability forecasts
and/or variables with asymmetric distributions (e.g.,
precipitation probability forecasts and wind speed
forecasts). Moreover, more imaginative use could be
made of graphical displays (e.g., response surface plots,
other bivariate displays), including colors, to facilitate
insights into basic distributional and performance
characteristics.

In conclusion, traditional verification generally has
consisted of characterizing forecast quality in terms of
a few overall performance measures (e.g., measures of
accuracy and/or skill). Since many basic characteristics
of forecasts and observations—both individually and
jointly—exist, traditional practices are necessarily in-
complete and potentially misleading. In the context of
comparative verification, for example, the fact that one
forecasting system is more accurate (as measured by
the mean square error) than another forecasting system
is no guarantee that the quality—or value—of the
former equals or exceeds that of the latter (see Murphy
and Ehrendorfer 1987; Ehrendorfer and Murphy
1988). This fact, when considered in conjunction with
the potential benefits of diagnostic verification to both
producers and users of forecasts, underscores the de-
sirability of adopting a diagnostic approach to forecast
verification in the future.
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APPENDIX A
Regression Models

Simple linear regression models are used in this paper
to facilitate the interpretation of the summary measures
of the conditional distributions, p(x|f) and p(f|x).
In the case of p(x|f); in which the observations are
regressed on the forecasts, the linear regression equation
describing the relationship between the expected value
of the observations given a particular forecast, E(x|f),
and the forecast, f, can be written as follows:

E(x|f)=a+ bf, (Al)

where a = (x) — b{f) and b = (s,/5/)1sx are the
ordinary least squares estimates of the (unknown)
regression coefficients. Here (/) is the sample mean
of the forecasts, {(x) the sample mean of the obser-
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vations, sy the sample standard deviation of the fore-
casts, s, the sample standard deviation of the obser-
vations, and ry, is the sample (product moment)
correlation coefficient between the forecasts and ob-
servations. "

In a verification context, it is obviously desirable for
the forecasts of interest to be conditionally and uncon-
ditionally unbiased. In terms of the notation employed
here, these “requirements” are represented by E(x|f)
= fforall fand {f) = (x), respectively. Thus, the
concept of conditionally unbiased forecasts is identical
to that of perfectly calibrated—or completely reliable—
forecasts (see section 2a). Moreover, it should be noted
that forecasts that are conditionally unbiased for all
forecast values are necessarily also unconditionally
unbiased. That is, E{E(x|f)] = E(x) = {(x) = E(f)
= (/).

With reference to the regression model in (A1), it
can be seen that the requirements of conditionally and
unconditionally unbiased forecasts will be satisfied only
if a = 0 and b = 1. Ideally, then, the regression line in
this case will have its intercept at zero and will possess
unit slope [i.e., it will correspond to the 45° line in a
diagram in which E(x|f) is plotted against f]. The
latter condition (i.e., b = 1) implies that sy = 5,7y, and,
since ry, is always less than or equal to I, the standard

deviation of the forecasts must be less than or equal to

the standard deviation of the observations.

In the case of p(f|x), in which the forecasts are
regressed on the observations, the linear regression
equation describing the relationship between the ex-
pected value of the forecasts given a particular obser-
vation, E(f|x), and the observation, x, can be ex-
pressed as follows:

E(flx)=c+dx, (A2)
where ¢ = (f) — d{x) and d = (sy/ sx) 1 are the or-
dinary least squares estimates of these regression coef-
ficients. Furthermore, since ry = (87/5,)b, it follows
that ¢ = (/) — (s7/5x)*b{x) and d = (s/s.)*b. Thus,
when the forecasts are conditionally and uncondition-
ally unbiased (i.e., when ¢ = 0 and b = 1) and yet are
still imperfect (i.e., 17, < 1), the intercept and slope of
the regression line in this case will be greater than zero
and less than one, respectively (i.e., c>0and d < 1).
Moreover, this regression line rather than the 45° line
represents the ideal relationship between E(f|x) and
x in the situation described by (A2). :

APPENDIX B
Discrimination Measure

The measure of discrimination (DIS) employed in
this paper is based on the likelihood ratio LR(f’; x;,
x;), where LR(f'; xi, x;) = p(f|x:)/p(f1x;). Specifi-
cally, the discrimination between the observations x;
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provided by the forecast f is denoted by DIS(f; x;,
X;), where

DIS(f; xi, x;)
= max[LR(f; x;, x;), l/LR(S; x;, x)]. (Bl)

Note that, as defined in (B1), DIS(f; x;, x;) = 1, with
larger values indicating greater discrimination.

To obtain an average value of discrimination for a
particular forecast f, it is necessary to average DIS(f;
X;, X;) in (B1) over all combinations of observations
x; and x;. Let DIS(f) denote this average value. Then, .

DIS(f) = [1/ 3 p(x)]?

xeT

X 2 3 p(x)p()DIS(f, %, X), (B2)

L |

where p(x;) and p(x;) represent the marginal proba-
bilities (relative frequencies) of the respective obser-
vations, p(x) denotes the generic marginal distribution
of x, and the set T consists of all values of x for which

p(f, x)>0. )
Finally, to obtain an overall measure of discrimi-

_nation, it is necessary to average DIS(f) in (B2) over

all forecasts. If we denote this overall average by DIS,

then

DIS = 3 p(f)DIS(f), (B3)

f

where p(f) is the marginal probability distribution of
the forecasts. Since DIS(f; x;, x;) = 1, values of DIS
in (B3) close to one indicate relatively little overall
discrimination. Larger departures of DIS from this ref-
erence value are indicative of greater overall discrim-
ination. '

APPENDIX C
Performance Measures

The mean error (ME) for a sample of forecasts f
and observations x is defined as follows:

ME = ((f=0))= (Y= (). (CD)

ME in (C1) is a measure of the unconditional (or sys-
tematic; or overall) bias in the forecasts, and ME = 0
for unconditionally unbiased forecasts.

In an analogous manner, the mean square error
(MSE) for a sample of data is defined as follows:

MSE = ((f— x)?). (C2)

MSE in (C2) is a measure of the accuracy of the fore-
casts. The root-mean-square error of the forecasts,
RMSE, is the square root of MSE in (C2); MSE
= RMSE = 0 for completely accurate forecasts.

The skill score (SS) employed in this paper is based
upon the MSE. Specifically, it is assumed that the stan-
dard of reference (for accuracy) is the MSE for forecasts
based solely on sample climatology (i.e., on {x)).
Thus,
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SS = 1 — (MSE/MSE(y,), (C3)

where MSE,y denotes the MSE for the reference fore-
casts. Since MSExy = s,” [see (C2)], it follows that

SS =1~ [{(f— x)?)/s:]. (C4)

SS in (C4) [or (C3)] is a measure of skill (or relative
accuracy). In particular, SS = 0 when the forecasts of
interest and the climatological reference forecasts are
equally accurate, and it is positive when the accuracy
of the former exceeds that of the latter.

APPENDIX D

Decompositions of Mean Square Error
and Skill Score

The MSE for a sample of forecasts and observations,
as defined in (C2), can be decomposed as follows:

MSE = ({f) = (x))* + 52 + 52 — 250807 (D1)

{(Murphy 1988). In this decomposition, the MSE is
expressed in terms of summary measures of the mar-
ginal and joint distributions of f and x. The first term
on the right-hand side (RHS) of (D1) represents a
measure of overall bias, whereas the remaining terms—
taken together—constitute the variance of the forecast
errors (i.e., s}_x). Separately, these latter three terms
characterize the variability and covariability (or degree
of linear association ) of the forecasts and observations.

The SS based on the MSE is defined by (C3) [or
(C4)]. Substitution of (D1) into (C4) yields

SS = rk — [ — (575017 = [({f) — {xD)/5x]?
(D2)

(Murphy 1988). This decomposition expresses SS in
terms of summary measures of p(f, x), p(f), and p(x).
It is evident, from the previously discussed regression
models (see appendix A), that the first term on the
right-hand side (RHS) of (D2) is a measure of the
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degree of (linear) association between the forecasts and
observations and that the second and third terms on
the RHS of (D2) are measures of conditional and un-
conditional bias, respectively. This decomposition re-
veals a fundamental deficiency in the correlation coef-
ficient as a performance measure; namely, it ignores
the conditional and unconditional biases in the fore-
casts (see Murphy 1988).
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