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ABSTRACT

The general framework for forecast verification described by Murphy and Winkler embodies a statistical
approach to the problem of assessing the quality of forecasts. This framework is based on the joint distribution
of forecasts and observations, together with conditional and marginal distributions derived from decompositions
of the underlying joint distribution. An augmented version of the original framework is outlined in this paper.
The extended framework provides a coherent method of addressing the problem of stratification in this context
and it can be used to assess forecast quality—and its various aspects—under specific meteorological conditions.
Conceptual examples are presented to illustrate potential applications of this methodological framework. Some
issues concerning the extended framework and its application to real-world verification problems are discussed

briefly.

1. Introduction

A general framework for forecast verification has
been described by Murphy and Winkler (1987, here-
after MW87). The foundation of this framework is the
joint distribution of forecasts and observations that (as-
suming statistical stationarity ) contains all of the non-
time-dependent information relevant to the problem of
assessing the quality of the forecasts of interest. To
obtain insight into basic characteristics (or aspects) of
forecast quality, it is useful to decompose this joint dis-
tribution into conditional and marginal distributions.
Consideration of the problem of forecast verification
from the perspective provided by these joint, condi-
tional, and marginal distributions leads to the identifi-
cation of a distributions-oriented body of verification
methods. Applications of these methods to short-range
weather forecasts have been reported by Murphy et al.
(1989) and Murphy and Winkler (1992).

Distributions-oriented verification methods, as de-
scribed in the published literature, have focused to date
on the statistical characteristics of the forecasts, the
observations, and their relationship, as embodied in the
underlying joint, conditional, and marginal distribu-
tions. Not surprisingly, however, various questions of
a meteorological nature arise when these methods (or
any verification methods) are applied. For example,
what differences exist between the various aspects of
forecast quality under different weather regimes? Are
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forecasts more reliable (accurate, skillful, . . .) under
some weather conditions than under other weather con-
ditions, in one season than in another season, etc.? Are
forecasts of changes in the weather more successful
given some initial conditions than given other initial -
conditions? To answer these and other similar ques-
tions, it is necessary to stratify the results of verification
programs (studies, exercises, etc.) on the basis of a rel-
evant set of meteorological conditions. The following
basic question arises in this context: Can the general
framework for forecast verification be extended in a
way that such stratifications can be accommodated?

The primary purpose of this paper is to outline—and
illustrate conceptually—an extended version of the
original framework that allows the requisite stratifica-
tions to be performed in a natural and coherent manner.
This extension is based on a fundamental concept in
elementary probability theory, which is known as ex-
tending the argument (e.g., O’Hagan 1988). In this
context, extending the argument involves (a) introduc-
ing a variable (or covariate) that describes completely
and unambiguously the meteorological conditions of
interest and (b) conditioning the underlying joint dis-
tribution on the basis of the values of this covariate. As
a result, the overall (i.e., unconditional) joint distri-
bution is decomposed into a set of conditional joint
distributions, each of which describes forecast quality
completely under specific meteorological conditions,
and a univariate distribution specifying the probabili-
ties of these mutually exclusive and collectively ex-
haustive conditions.

To obtain insight into the basic aspects of forecast
quality under such conditions, each conditional joint
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distribution can be decomposed into univariate distri-
butions of two types: (a) univariate distributions con-
ditional on the meteorological conditions and either a
distinct forecast or a distinct observation and (b) uni-
variate distributions conditional only on the meteoro-
logical conditions. This second level of decomposition
is analogous to that described in MW87, except that the
joint distributions of interest already are conditioned on
the values of a meteorological covariate. Thus, the con-
cept of extending the argument provides a coherent
(i.e., logically complete) approach to the problem of
stratifying the results of distributions-oriented verifi-
cation programs on the basis of meteorological consid-
erations.

Section 2 introduces the concept of extending the
argument using simple examples. The general frame-
work for forecast verification and its extended ver-
sion—which embodies stratification—are described in
section 3. Potential applications of the extended frame-
work are illustrated using conceptual examples in sec-
tion 4. Section 5 contains a discussion of various issues
concerning the framework itself as well as its applica-
tion to real-world verification problems, and section 6
consists of a brief summary and some concluding re-
marks.

2. The concept of extending the argument

The concept of extending the argument is simply the
concept of conditional probability in a different guise
and with a specific purpose in mind. O’Hagan (1988,
45-51), for example, describes this concept succinctly
in the context of subjective probability measurement or
assessment. Difficulties are sometimes encountered in
assessing the unconditional probability of an event di-
rectly in this context. In such situations, it is frequently
useful to introduce a covariate (i.e., a variable related
to the event of interest) and to assess the conditional
probability of the event given each value (or range of
values) of the covariate and the unconditional proba-
bilities of the values of the covariate. These conditional
and unconditional probabilities can then be combined
according to a basic probability law to obtain the de-
sired probability.

To make this discussion more concrete, consider a
situation in which E denotes an event for which the
probability must be determined. Further, let Z denote a
covariate, which (for simplicity) can take on only two
distinct values z, and z,. Then the probability of E,
Pr(E), can be expressed as follows:

Pr(E) = Pr(E|z,) Pr(z1) + Pr(E|z) Pr(z), (1)

where Pr(Elz,) is the conditional probability of E
given Z = z), Pr(E|z,) is the conditional probability of
E given Z = z,, Pr(z,) is the unconditional (or mar-
ginal) probability that Z = z,, and Pr(z) [=1
— Pr(z;)] is the unconditional (or marginal ) probabil-
ity that Z = z,.
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Consider a simple meteorological example involving
the application of this concept. Let E denote the event
‘‘measurable precipitation in Corvallis tomorrow after-
noon.”” Rather than assessing Pr(E) directly, a fore-
caster might find it easier to assess the conditional prob-
ability of E given that weather regime z; prevails to-
morrow afternoon and the unconditional probability
that regime z; will indeed prevail (j = 1, 2). The prob-
ability Pr(E) can then be reconstructed from these con-
ditional and unconditional probabilities by means of
(1), which represents a two-term version of the law of
total probability.

The decomposition in (1) can be readily extended
to a situation in which the covariate Z is defined in
terms of an m-fold partition. In this case,

Pr(E) = X Pr(Elz) Pr(z), (j=1,---,m), (2)

J

where Pr(E|z) is the conditional probability of E given
Z = z;, and Pr(z) is the unconditional probability that
Z = z;. Here the m values of the covariate Z might
represent a set of m mutually exclusive and collectively
exhaustive (m.e.c.e.) weather regimes.

Analogous decompositions can be defined in situa-
tions involving probability distributions. Suppose that
instead of the probability of an event E, a probability
distribution for a (discrete or continuous) variable Y,
g(y), must be determined. Then, for a covariate Z de-
fined in terms of an m-fold partition, it follows that

g(y) = Zg(ylzj) Pr(zp), (G=1,-,m), (3)

7

where g(y|z) is the conditional distribution of Y given
Z = z;, and Pr(z;) is once again the unconditional prob-
ability that Z = z;. Similar decompositions can be de-
fined in situations in which the distribution of interest
is a bivariate or multivariate distribution.

3. Extended version of general framework
a. Basic framework

As noted in section 1, the Murphy—Winkler general
framework for forecast verification is based on the joint
distribution of forecasts and observations (see MW87).
If F denotes the forecast and X denotes the observation,
then this distribution can be written as p(f, x), where
f represents a generic forecast and x represents a ge-
neric observation. This distribution specifies the prob-
ability that F = f and X = x for all possible combina-
tions of fand x and, in practice, it would be estimated
by means of the joint relative frequencies of the various
combinations of forecasts and observations in a veri-
fication data sample.

To provide insight into basic aspects of forecast
quality, it is useful to decompose p(f, x) into condi-
tional and marginal distributions. Two such decompo-
sitions can be defined:
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p(f, x) = p(x|f)p(f) (4)

and

p(f, x) = p(flx)p(x) (5)

(see MW87). Here p(x|f) represents the conditional
distribution of X given F = f, p(f|x) represents the
conditional distribution of F given X = x, p(f) rep-
resents the marginal distribution of F, and p(x) rep-
resents the marginal distribution of X, It should be
noted that a conditional distribution p(x|f) in (4) and
p(f|x) in (5) exists for each possible forecast f and
observation x, respectively. These conditional distri-
butions play particularly important roles in the distri-
butions-oriented approach to forecast verification be-
cause they characterize the relationship between the
forecasts and observations.

A “‘complete’’ approach to forecast verification can
be based on p(f, x),onp(x|f)and p(f),oronp(f|x)
and p(x). Nevertheless, it is useful in general to ex-
amine all of these distributions because they provide
insight into different aspects of forecast quality (see
MW87). Moreover, misleading or erroneous conclu-
sions may be drawn concerning the absolute and/or
relative quality (and value) of forecasts if an approach
is adopted that fails to respect the full dimensionality
of a verification problem, as defined by the underlying
joint, conditional, and marginal distributions ( see Mur-
phy 1991; Murphy and Ehrendorfer 1994).

With these distributions in mind, it is possible to as-
semble a distributions-oriented body of verification
methods that constitutes a structured approach to the
problem of assessing absolute or relative forecast qual-
ity. Three classes of distributions-oriented methods can
be identified: 1) the underlying joint, conditional, and
marginal distributions themselves; 2) summary mea-
sures of these distributions (means, variances, etc.);
and 3) performance measures (i.e., measures of various
aspects of the relationship between F and X). Appli-
cations of tailored versions of this body of methods to
verification problems involving nonprobabilistic tem-
perature forecasts and precipitation probability fore-
casts have been described in detail by Murphy et al.
(1989) and Murphy and Winkler (1992), respectively.

b. Extended framework

The augmented version of the original framework,
based on the extending-the-argument concept, is for-
mulated here by introducing a discrete covariate Z.
Specifically, the variable Z is assumed to possess m
m.e.c.e. values or states. The overall joint distribution
of F and X, p(f, x), can then be decomposed, by ap-
pealing to the extending-the-argument concept, as fol-
lows:

p(fix) =X p(fixl5) Pr(z), (=1, -

L, m),
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where p(f, x|z) is the conditional joint distribution of
F and X given Z = z;, and Pr(z;) (as before) is the
unconditional probability that Z == z;. Since the distri-
bution p(f, x|z;) contains all of the information rele-
vant to forecast quality under the condition Z = z; (as-
suming statistical stationarity), it follows that the de-
composition in (6) provides a coherent approach to the
problem of assessing forecast quality under all possible
conditions, as defined by the values of the covariate Z.

Note that the introduction of the covariate Z leads to
the stratification of the overall verification data sample
into m subsamples, where the jth subsample consists
of all pairs of forecasts and observations given Z = z;.
The distribution p(f, x|z;) would be estimated on the
basis of the joint relative frequencies of the various
combinations of forecasts and observations in this sub-
sample. Some issues related to this estimation problem
are discussed briefly in section 5.

To obtain information concerning the various basic
aspects of forecast quality given the condition Z = gz;,
it is necessary to decompose the joint distribution
p(f, x|z;) into univariate distributions. As in the case
of the overall joint distribution [see (4) and (5)], two
such decompositions can be identified:

p(f, xlz) = p(x|f, 2)p(flz) (7

and
(8)

In (7), p(x|f, z) represents the conditional distribu-
tions of the observations given the forecasts and the
condition Z = z;, and p(f|z;) represents the marginal
distribution of the forecasts under this condition. Like-
wise, in (8), p(f |x, z;) represents the conditional dis-
tributions of the forecasts given the observations and
the condition Z = z;, and p(x|z) represents the mar-
ginal distribution of the observations under this con-
dition. To obtain diagnostic information of potential
interest under all conditions, it is necessary to perform
this decomposition for all m values of the covariate Z.

A coherent approach to the problem of assessing
forecast quality—and its various aspects—under the
m.e.c.e. set of meteorological conditions described by
the covariate Z requires a body of verification methods
analogous to that identified in the basic (i.e., uncon-
ditional) situation. Given Z = gz;, these three classes of
methods are (a) the basic distributions p(f, x|z),
p(xlf. z), p(flx, 2), p(flz), and p(x|z); (b) sum-
mary measures of these distributions; and (c) perfor-
mance measures describing various aspects of the re-
lationship between F and X under this condition. These
classes of methods must be evaluated for all m values
of Z to obtain a complete assessment.

For some summary measures of the underlying dis-
tributions and some measures of aspects of quality, a
simple relationship exists between the condition-de-
pendent values of these measures and their overall val-

p(f. x|z) = p(flx, )p(x|z).
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ues. For these measures, the overall values are simply
the weighted averages of the condition-dependent val-
ues, where the weights are the probabilities of the var-
ious conditions. Let M; denote the value of such a mea-
sure given that condition Z = z; prevails (j = 1, -,
m). If M denotes the value of this measure for the ver-
ification data sample as a whole, it follows that

M=% MPr(z), (j=1,

J

-, m).

€))

Thus, if the overall values of such measures are re-
quired in addition to their condition-dependent values,
then it is necessary to determine the probabilities of the
respective conditions—that is, the Pr(z) (j =1, - - -,
m). Measures for which (9) holds include (for exam-
ple) the means of the underlying conditional and mar-
ginal distributions and the mean square error. On the
other hand, many other measures, such as the variances
of the underlying conditional and marginal distribu-
tions and the correlation coefficient, do not satisfy the
relationship embodied in (9) (unless the condition-de-
pendent, or subsample, means are all equal).

4. Applications: Conceptual examples

In this section we consider conceptual examples of
the application of the extended framework described in
section 3b. Each example involves the decomposition
of the original joint distribution of forecasts and obser-
vations into conditional joint distributions on the basis
of a m.e.c.e. set of values of a meteorological covariate.
In terms of verification data, the decomposition process
stratifies the overall data sample into subsamples,
which can then be used to estimate these conditional
joint distributions.

a. Example 1—Stratification by weather regime

Assessing (and/or comparing) the quality of fore-
casts under different weather regimes is a familiar prob-
lem. Such regimes can be defined in a variety of ways,
ranging from large-scale weather patterns to regional
weather types or local weather conditions (e.g., easterly
or westerly surface wind, surface pressure rising or fall-
ing). The extended framework appears to provide a
natural and coherent means of assessing forecast qual-
ity—and its various aspects—in such situations.

In applying the extended framework in this context,
the first step is to define a relevant set of m.e.c.e. re-
gimes {R;; j =1, -+, m}. Then, using the notation
introduced in section 3, the quality of the forecasts
given regime R; is characterized fully (assuming statis-
tical stationarity) by the conditional joint distribution
p(f, x|R;). Moreover, the conditional distributions
p(x|f9 Rj)7p(f|x’ Rj)ap(fle)7 andp(lej)7 obtained
from decompositions of p(f, x| R;), provide insight into
basic aspects of forecast quality (e.g., reliability, res-
olution, sharpness, discrimination ) under regime R;.
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As indicated in section 3b, these basic distribu-
tions—that iS, p(f’ x'Rj)7 p(xlfv Rj)’ P(flx, Rj)9
p(fIR;), and p(x|R;)—represent the first (i.e., pri-
mary ) class of distributions-oriented verification meth-
ods. The other two classes of methods consist of sum-
mary measures (e.g., means, variances) of these basic
distributions and performance measures describing
specific aspects of the relationship between the fore-
casts and observations. A full assessment of forecast
quality for regime R; would involve the examination of
results based on the application of all three classes of
verification methods. Comprehensive assessment of
forecast quality for all m regimes necessarily requires
the examination of the results of applying these meth-
ods to all conditional joint distributions p(f, x|R)) (j
=1, - -+, m). To calculate the overall values of sum-
mary measures or measures of aspects of quality that
satisfy the relationship embodied in (9), the regime
probabilities Pr(R;) also must be determined.

This concgptual example is also a generic example
in the sense that the form of the extended framework
outlined here presumably applies (with relatively mod-
est changes) to stratifications defined in terms of a wide
variety of other meteorological conditions. Such con-
ditions might include the presence or absence of some
particular feature(s) in an observed or analyzed two-
dimensional field or a m.e.c.e. set of initial conditions
(i.e., the set of possible initial conditions that may pre-
vail when the forecasts are made). Application of the
extended framework to problems involving stratifica-
tions defined in terms of initial conditions might pro-
vide an insightful approach to problems of assessing/
comparing the quality of forecasts of changes in the
weather.

b. Example 2— Stratification by forecast difficulty

Another class of verification problems in which the
extended framework may be useful are situations char-
acterized by various levels of forecast difficulty. These
problems are perhaps best exemplified by situations in-
volving forecasts of rare and/or severe events (e.g.,
tornadoes, severe thunderstorms). In these situations,
many forecasts are relatively ‘‘easy’’ in the sense that
it is quite evident on these occasions that the rare or
severe events are very unlikely to occur. Since the
events of interest generally do not occur on most such
occasions, the verification data sample (in situations
involving ‘‘yes—no’’ forecasts and observations ) often
is dominated by cases involving the ‘‘no-no’’ com-
bination (i.e., the combination involving cases in which
the events are neither forecast nor observed to occur).
In such situations, traditional verification methods may
be relatively insensitive to changes or differences in
quality for the remaining ‘‘difficult’’—and usually
more important—forecasts.

To illustrate the application of the extended frame-
work in this context, consider a simple situation in
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which a covariate W is used to stratify (a priori) the
forecasting situations into easy cases (W = w,) and
difficult cases (W = w,). Such a stratification might be
accomplished by comparing the actual value of W with
a critical value w,, and by setting W = w, if w < w,
and W = w, if w = w,.. Then, given the values of the
covariate W, the overall joint distribution p(f, x) can
be decomposed as follows:

p(f, x) = p(f, x|w)) Pr(w)) + p(f, x|wz) Pr(w,),
(10)

where p(f, x|w,) represents the joint distribution of F
and X for the easy cases (W = w)), p(f, x|w,) repre-
sents the joint distribution of F and X for the difficult
cases (W = w,), Pr(w,) represents the probability that
W = wy, and Pr(w,) [=1 — Pr(w,)] represents the
probability that W = w,.

Suppose further that the forecasts and observations
are binary variables; that is, the rare or severe events
are either forecast to occur (¥ = 1) or forecast not to
occur (F = 0), and they are subsequently either ob-
served to occur (X = 1) or observed not to occur (X
= 0). Under these conditions, the components of the
conditional joint distributions p(f, x|w;) (j = 1, 2)
correspond to the elements of 2 X 2 verification ma-
trices. Let P,,, and P,,, denote the matrices containing
the components of the joint distributions p(f, x|w,)
and p(f, x|w,), respectively. Then the quality of the
easy and difficult forecasts can be assessed separately
by examining the elements of P, and P,,, respectively,
together with the components of the respective univar-
iate conditional distributions derived from decompo-
sitions of the joint conditional distributions [see (7)
and (8)].

This approach may be particularly useful in the con-
text of comparative verification. Suppose that the qual-
ity of two rare- or severe-event forecasting systems, A
and B say, must be compared. In such a situation it
seems reasonable to require that 1) A and B both adopt
the same critical value w,. to determine whether W
= w; or W = w, and 2) they both follow the same
forecast strategy for the easy cases in which W = w,;
namely, they always forecast that the event(s) of in-
terest will not occur (i.e., F = 0). Under these as-
sumptions P,, (A) = P,, (B), so that the easy cases are
‘‘quality neutral’” with respect to the comparison of
systems A and B. Thus, comparative verification of A
and B can be ‘‘reduced’’ to the comparison of P,,,(A)
and P,,(B), and the univariate conditional and mar-
ginal distributions that can be derived from decompo-
sitions of these conditional joint distributions. Since the
no-no [i.e., Pr(F = 0, X = 0)] element in the matrix
P.., presumably no longer plays the extremely domi-
nant role that it did in the overall matrix P (the 2 X 2
matrix for the overall verification data sample), any
differences between P,,(A) and P,,(B) should be
more readily apparent and/or easier to detect.
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The notion of forecast difficulty (or degree of pre-
dictability ) also arises in the context of ensemble fore-
casting (e.g., Tracton and Kalnay 1993). Here, the de-
composition associated with the extended framework
might be defined in terms of a covariate representing a
measure of ensemble dispersion. Application of the
augmented framework in this context could provide a
means of obtaining a coherent assessment of various
aspects of forecasting performance as a function of
such a dispersion measure.

5. Discussion

The extended framework for forecast verification
embodies a coherent approach to the problem of strat-
ifying verification data samples into subsamples on the
basis of a specified set of meteorological conditions.
Within this framework, the joint distribution of fore-
casts and observations for a particular subsample char-
acterizes forecast quality completely (assuming statis-
tical stationarity ) under the corresponding meteorolog-
ical condition. Several questions arise regarding the
extended version of the general framework itself, as
well as its application to verification problems, and
some of these questions are addressed briefly in this
section.

A basic question relates to the need for—and ben-
efits of —such a framework. In this regard, modelers,
forecasters, and others have conducted assessments of
forecasting performance under specific meteorological
conditions for many years. In most studies of this type,
however, only a relatively small subset of the overall
set of forecasting occasions has been investigated.
Thus, although these case studies may have provided
some useful insights into the behavior of models—and
the characteristics of forecasting performance—in par-
ticular situations, their significance in terms of the con-
tribution of subset forecasting performance to overall
forecasting performance has seldom been very clear.
Moreover, such studies generally have not taken full
advantage of the diagnostic statistical methods associ-
ated with the distributions-oriented approach to verifi-
cation problems.

In a practical sense, the extended framework pro-
vides a formal means of decomposing sample forecast
quality into subsample forecast quality. Moreover,
within this framework, the contribution of the latter to
the former can be seen to depend on two factors;
namely, the subsample quality itself and the probability
(or relative frequency) of occurrence of the meteoro-
logical conditions that define the subsample. Thus, sub-
samples for which the latter factor is small generally
will make relatively modest contributions (in a positive
or negative sense) to overall forecast quality.

The extended framework also provides some insight
into the nature of both meteorological case studies and
traditional verification exercises, including their rela-
tionship. In particular, these two types of studies can
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be seen to represent the extremes of a broad spectrum
of possible forecast-quality assessments, with case
studies usually focusing on some characteristics of a
conditional joint distribution p(f, x|z) (associated
with the meteorological condition Z = z;) and tradi-
tional verification exercises focusing on characteristics
of the overall joint distribution p(f, x). Clearly, a po-
tentially rich ‘‘middle ground’’ for forecast-quality
studies exists between these two extremes.

Diagnostic verification, as exemplified by the studies
of Murphy et al. (1989) and Murphy and Winkler
(1992), defines a particular class of statistical forecast-
quality assessments in this middle ground. Within this
class of assessments, the conditions of interest are rep-
resented by—and limited to—the values of the fore-
cast F and the observation X. On the other hand, the
extended framework provides a formal means of de-
composing overall forecast quality into contributions
associated with an essentially unlimited variety of me-
teorological conditions (through the introduction of the
covariate Z ). Moreover, when the problem of improv-
ing forecasting performance is considered from the per-
spective of this augmented framework, it may be pos-
sible to identify new ways of enhancing the diagnos-
ticity and usefulness of future studies of forecast
quality, regardless of whether these studies are primar-
ily of a meteorological or statistical nature.

In this paper descriptions of the extended framework
have been concerned principally with situations in-
volving one set of forecasts (i.e., absolute verification).
Comparative verification, which necessarily involves
the relative quality of two (or more) sets of forecasts,
is obviously also of interest in this context. Within the
original framework, comparison of F’s and G’s fore-
casts (for example) would be based on their respective
joint distributions, p(f, x) and g(g, x), and on the con-
ditional and marginal distributions derived from de-
compositions of these underlying joint distributions.
Application of the extended framework in the context
of comparative verification appears to be relatively
straightforward, since it presumably would involve a
common stratification scheme applied to both sets of
distributions. In addition to the use of diagnostic veri-
fication methods, the application of the sufficiency re-
lation (Ehrendorfer and Murphy 1988; Murphy and
Ehrendorfer 1994) to the respective subsamples of
forecasts and observations defined by this stratification
scheme might be explored as well. Although F’s and
G’s forecasts may be insufficient for each other in an
overall sense, such an investigation might reveal that
F’s forecasts are sufficient for (i.e., unambiguously su-
perior to) G’s forecasts—or vice versa—under some
conditions defined by the meteorological covariate.

The utility of the extended framework as a means of
obtaining condition-dependent assessments (or com-
parisons ) of forecast quality depends on the availability
of verification data samples—and subsamples—of
adequate size. Moreover, it should be kept in mind that
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the second level of decomposition required to obtain
diagnostic insight into basic aspects of forecast quality
places additional requirements on sample or subsample
size. Thus, only relatively large verification data sam-
ples can support a full condition-dependent, diagnostic
assessment of forecast quality. As a result, the desir-
ability of adopting relatively ‘‘narrow’’ definitions of
meteorological conditions in order to focus on similar
situations of particular interest must be weighed against
the likelihood that estimates of forecast quality —and
its various aspects—may be relatively unreliable under
such conditions.

As described in this paper, the covariates character-
izing the meteorological conditions of interest gener-
ally have been assumed to be univariate in nature. The
weather regimes considered in section 4a are an excep-
tion since they usually are defined in terms of multi-
variate (or multidimensional) weather patterns or
weather types. In any case, the extended framework
described in section 3b places no restriction on the di-
mensionality of the covariates. Two or more different
variables (e.g., temperature and precipitation) could be
used to define the relevant conditions, or they could be
defined in terms of the presence or absence of particular
features in two-dimensional fields involving a single
variable (e.g., a surface pressure field, a geopotential
height field).

Moreover, no formal restriction exists on the types
of forecasts (and observations) whose quality can be
assessed and decomposed using either the basic or ex-
tended framework. For example, these frameworks can
be applied to probabilistic, as well as nonprobabilistic,
forecasts and to forecasts defined in terms of two-di-
mensional fields, as well as forecasts for specific points
(e.g., stations, grid points). It should be noted that in
some specific cases (e.g., probabilistic forecasts for
polychotomous events ) the number of distinct forecasts
can impose relatively severe sample-size requirements
for diagnostic verification (see Murphy 1991), require-
ments that may seldom be satisfied in practice.

6. Conclusions

As described in MW87, the general framework for
forecast verification makes no explicit allowance for
the inclusion of meteorological considerations. Such
considerations are exemplified by the problems of as-
sessing and/or comparing the quality of forecasts under
specific meteorological conditions (e.g., weather re-
gimes). An extended version of the general framework
has been outlined here that addresses the problem of
stratification in a coherent manner. The augmented
framework has been formulated by appealing to the
concept of extending the argument, a basic concept in
elementary probability theory.

Application of the extending-the-argument concept
in this paper has consisted of introducing a covariate
whose values define a complete set of relevant mete-
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orological conditions. These covariate values are then
used to decompose the overall joint distribution of fore-
casts and observations into conditional joint distribu-
tions, each of which describes forecast quality com-
pletely under specific conditions. From a practical point
of view, this process stratifies the overall verification
data sample into subsamples, each of which provides a
basis for estimating the conditional joint distribution
associated with the corresponding meteorological con-
ditions. The structure of the extended framework re-
veals that the contribution of subsample quality to sam-
ple quality depends on two factors; namely, the sub-
sample quality itself and the relative frequency of the
meteorological conditions associated with that sub-
sample.

Decomposition of these conditional joint distribu-
tions into univariate distributions, in a manner analo-
gous to that described for the overall joint distribution
in MW87, facilitates insights into basic aspects of fore-
cast quality under the various meteorological condi-
tions. A body of diagnostic verification methods, es-
sentially identical to that assembled in connection with
the basic framework, is available to assess the various
aspects of quality under these conditions. The meth-
odological approach to forecast verification embodied
in the extended framework thus appears to be quite
powerful and flexible.

Conceptual examples were considered to illustrate
the potential utility of the extended framework. These
examples suggest that this framework may be useful in
providing a structured approach to the problems of as-
sessing and/or comparing forecast quality under a wide
variety of meteorological conditions, including differ-
ent weather regimes, various initial weather conditions,
and different levels of forecast difficulty. Its use as a
means of separating easy and difficult situations in the
context of rare- or severe-event forecasting, thereby al-
lowing attention to be focused on the absolute and/or

relative quality of forecasts of significant events, ap- .

pears to offer particular promise.

Some issues related to the generality and applicabil-
ity of the extended framework were discussed briefly.
These issues included insights provided by the frame-
work itself into the nature of the relationship between
meteorological case studies and traditional verification
exercises, requirements concerning sample (and sub-
sample) size imposed by application of the proposed
framework, and use of the framework in comparative
verification as a means of investigating the conditional
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sufficiency of alternative forecasting systems. It also
was noted that the extended framework can be applied
in situations involving multivariate covariates, as well
as in situations involving forecasts expressed in prob-
abilistic formats.

Firm conclusions regarding the utility of the ex-
tended version of the general framework for forecast
verification introduced in this paper must await the ap-
plication of this framework in a variety of real-world
situations and the assessment of its impact on verifi-
cation practices. At a minimum, however, the aug-
mented framework appears to provide a reasonably
general and potentially useful structural setting within
which alternative verification or forecast-quality stud-
ies can be designed and/or their results evaluated.
Moreover, application of the extended framework, in-
cluding the decompositions identified with the phrase
‘‘diagnostic verification”” (see section 3b), should lead
to more insightful and useful meteorological case stud-
ies, whatever strategies are followed in the design and
conduct of these studies.
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