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ABSTRACT

Two fundamental characteristics of forecast verification problems—complexity and dimensionality—are
described. To develop quantitative definitions of these characteristics, a general framework for the problem of
absolute verification (AV) is extended to the problem of comparative verification (CV). Absolute verification
focuses on the performance of individual forecasting systems (or forecasters), and it is based on the bivariate
distribution of forecasts and observations and its two possible factorizations into conditional and marginal
distributions.

Comparative verification compares the performance of two or more forecasting systems, which may produce
forecasts under 1) identical conditions or 2) different conditions. The first type of CV is matched comparative
verification, and it is based on a 3-variable distribution with 6 possible factorizations. The second and more
complicated type of CV is unmatched comparative verification, and it is based on a 4-variable distribution with
24 possible factorizations,

Complexity can be defined in terms of the number of factorizations, the number of basic factors (conditional
and marginal distributions) in each factorization, or the total number of basic factors associated with the
respective frameworks. These definitions provide quantitative insight into basic differences in complexity among
AV and CV problems. Verification problems involving probabilistic and nonprobabilistic forecasts are of equal
complexity.

Dimensionality is defined as the number of probabilities that must be specified to reconstruct the basic
distribution of forecasts and observations. It is one less than the total number of distinct combinations of
forecasts and observations. Thus, CV problems are of higher dimensionality than AV problems, and problems
involving probabilistic forecasts or multivalued nonprobabilistic forecasts exhibit particularly high dimensionality.

Issues related to the implications of these concepts for verification procedures and practices are discussed,
including the reduction of complexity and/or dimensionality. Comparative verification problems can be reduced
in complexity by making forecasts under identical conditions or by assuming conditional or unconditionat
independence when warranted. Dimensionality can be reduced by parametric statistical modeling of the dis-
tributions of forecasts and/or observations.

Failure to take account of the complexity and dimensionality of verification problems may lead to an incomplete
and inefficient body of verification methodology and, thereby, to erroneous conclusions regarding the absolute
and relative quality and/or value of forecasting systems.
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1. Introduction

In recent years, fundamental concepts and issues re-
lated to the problem of forecast verification have re-
ceived some attention in the meteorological literature.
For example, Murphy and Winkler (1987) (hereafter
MW?87) described a general framework for (absolute)
forecast verification. This framework is based on the
joint distribution of forecasts and observations, and it
provides the basis for a coherent approach to verifi-
cation procedures and practices. In particular, it led to
the development of diagnostic verification, an approach
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that provides detailed insight into the basic character-
istics of forecasting performance (Murphy et al. 1989).
The extension of the framework for absolute verifica-
tion to the more complicated problem of comparative
verification has been sketched by Murphy (1989, pp:
94-95).

With regard to basic characteristics of verification
problems, it has long been recognized that some veri-
fication problems are more complicated than others.
For example, the problem of comparing the perfor-
mance of two or more forecasting systems (or fore-
casters) is inherently more “complex™ than the prob-
lem of evaluating the performance of an individual
system (forecaster). Moreover, it is intuitively under-
stood that verification. of multicategory forecasts is
necessarily more difficult than verification of 2-category
forecasts. The “dimensionality” of the former, in terms
of the number of different combinations of forecasts
and observations, is higher than that of the latter, Cur-
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rently, however, complexity and dimensionality are ill-
defined concepts in the context of forecast verification,
and the implications of these concepts for verification
procedures and practices remain unclear.

The primary purposes of the present paper are 1) to
provide quantitative definitions of the concepts of
complexity and dimensionality in this context and 2)
to discuss their implications for verification procedures
and practices. To accomplish these objectives the
framework for absolute verification is extended to the
problem of comparative verification, and the frame-
work for the latter is described in some detail. Explicit
recognition of the complexity and dimensionality of
verification problems is an important first step in the
process of developing a coherent, adequate (or com-
plete), and insightful body of verification methodology.

Section 2 describes the complexity of several veri-
fication problems. To provide a rationale for the quan-
titative definitions of complexity proposed here,
frameworks for both absolute and comparative veri-
fication are outlined in this section. The dimensionality
of verification problems is defined in section 3, and
examples of verification problems are presented to il-
lustrate the concept of dimensionality. Issues related
to the implications of these concepts for verification
procedures and practices are discussed in section 4.
These issues include the dangers of ignoring complexity
and dimensionality, possible ways of reducing the
complexity and dimensionality of verification prob-
lems, and the implications of the concepts for verifi-
cation datasets. Section 5 consists of a summary and
some concluding remarks.

2. Complexity of verification problems

a. Absolute verification

In the case of absolute verification (AV) we are con-
cerned with the performance of an individual fore-
casting system (or forecaster). A general framework
for the AV problem is described in MWS87. This
framework is based on the joint distribution of forecasts
and observations p( f, x), where fdenotes the forecasts
and x denotes the observations. The distribution
p(f, x) contains all of the nontime-dependent infor-
mation relevant to forecast verification (i.e., all of the
information—except the time order of the forecast-
observation pairs—that is required to determine the
statistical characteristics of the forecasts, the observa-
tions, and their relationship).

As described in MW87, the bivariate distribution
p(f, x) can be factored into conditional and marginal
distributions in two ways:

p(f, x) = p(x |/)p(f) (1)

and

p(f, x) = p(f| x)p(x), (2)
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where p(x |f) represents the conditional distributions
of the observations given the forecasts, p(f| x) repre-
sents the conditional distributions of the forecasts given
the observations, p(f) represents the marginal distri-
bution of the forecasts, and p(x) represents the mar-
ginal distribution of the observations. These condi-
tional and marginal distributions provide access to the
information contained in the joint distribution. The
expressions in (1) and (2) generally are referred to as
the calibration-refinement (CR) and likelihood-base
rate (LBR) factorizations, respectively, of the distri-
bution p(f, x) (see MW87).

The practice of AV can be said to be adequate if it
is based on a body of methodology that permits recon-
struction of the bivariate distribution p(f, x). For ex-
ample, in the case of probabilistic forecasts for a 2-
category variable (e.g., precipitation /no precipitation),
AV based on an examination of p(x |f)—the calibra-
tion (or reliability) function—and p(f)—the refine-
ment (or sharpness) function—is adequate (see
MW387), since p(f, x) can be reconstructed from these
conditional and marginal distributions. On the other
hand, AV based solely on a measure of overall forecast
accuracy such as the Brier score (BS) (Brier 1950) is
inadequate, since knowledge of the BS generally is not
adequate to reconstruct the joint distribution.

Since verification practices based on either factori-
zation can be adequate, these factorizations could be
viewed as the bases of alternative approaches to AV.
However, the two factorizations involve factors (i.e.,
distributions) that provide information regarding dif-
ferent characteristics of the forecasts, the observations,
and their relationship (see MW87). Thus, it is more
appropriate to view the CR and LBR factorizations as
the bases of complementary approaches to AV. Of
course, since the two factorizations are derived from
the same bivariate distribution, the respective sets of
factors are related, and complete knowledge of one set
allows reconstruction of the other set (via the joint
distribution ). Nevertheless, in order to obtain a com-
plete (as opposed to an adequate) assessment of fore-
casting performance, it is necessary to examine the dis-
tributions associated with both factorizations (as well
as the bivariate distribution itself).

b. Comparative verification

When two or more forecasting systems (or fore-
casters ) are compared, it is important to recognize that
the two sets of forecasts may have been made under
identical conditions or under different conditions (the
phrase ‘“identical conditions” implies the same fore-
casting situations, weather variable, geographic loca-
tion, lead time, etc.). Since these circumstances can
have a profound influence on the complexity of com-
parative verification (CV), it is necessary to distinguish
between the two situations. The former is referred to
as matched comparative verification (MCV) and the
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latter is referred to as unmatched comparative verifica-
tion (UCV).

In describing the basic distributions for MCV and
UCYV, and the factorizations of these distributions into
conditional and marginal distributions, it will be useful
to distinguish between composite factors and basic fac-
tors. Composite factors are distributions (conditional /
unconditional ), such as p(f, x) in AV, that can be
decomposed into other distributions. On the other
hand, basic factors are distributions (conditional/
marginal), such as p(x | ) and p(f) in AV, that cannot
be decomposed into other distributions. The distinction
between these two types of factors will become clear
in the following paragraphs.

Matched comparative verification. In this case we
are concerned with two forecasting systems that for-
mulate forecasts under identical conditions. The vari-
ables of interest here are two sets of forecasts, fand g
(for convenience, fand g are sometimes referred to as
the type 1 and type 2 forecasts), and the corresponding
set of observations x. The basic framework for this
problem is the 3-variable (or trivariate) distribution
p(f, g, x). This distribution contains all of the nontime-
dependent information relevant to MCV (i.e., non-
time-dependent information regarding the statistical
characteristics of the forecasts, the observations, and
the relationships among the two types of forecasts and
the observations).

The distribution p(f, g, x) can be factored into con-
ditional and marginal distributions in 6 (=3!) distinct
ways:

p(f, & x) = p(x|f, &)p(g | p(f), (3)

p(f, & x) = p(x|f, 8)p(f|g)p(g), (4)

p(f, &, x) = p(g|f, x)p(x |f)p(f), (5)

p(f, & x) = p(g|f, x)p(f1x)p(x), (6)

p(f, & x) = p(flg, x)p(x|g)p(g), (7)
and

p(f. & x) = p(flg, x)p(glx)p(x),  (8)

where p(x |f, g) represents the conditional distributions
of the observations given both types of forecasts, p(g | /)
represents the conditional distributions of the type 2
forecasts given the type 1 forecasts, p(f) represents the
marginal distribution of the type 1 forecasts, etc. In
(3)-(8) the factorizations are expressed in terms of
basic factors. The process of deriving these expressions
involves two steps: 1) decomposition of p(f, g, x) into
composite factors and basic factors and 2) decompo-
sition of the composite factors obtained in step 1) into
basic factors. For completeness, the intermediate
expressions obtained in step 1) are included in appen-
dix A. This appendix also briefly describes the rela-
tionship between the expressions in (3)-(8) and these
intermediate expressions.
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The practice of MCV is adequate if it is based on
methodology that permits reconstruction of the tri-
variate distribution p(f, g, x). Thus, verification pro-
cedures based on any of the six factorizations of
p(/f, g, x) can be adequate. In addition, it is important
to recognize that MCV necessarily involves consider-
ation of the relationship between the two types of fore-
casts. For example, if MCYV is based on the factorization
described by (3), then the conditional distributions of
the observations given both types of forecasts,
p(x|f, g); the conditional distributions of the type 2
forecasts given the type 1 forecasts, p(g |f); and the
marginal distribution of the type 1 forecasts, p(f), must
be considered (and/or the verification methodology
used must permit reconstruction of these distribu-
tions). In general, however, MCV based on the two
bivariate distributions of the forecasts and observations,
p(f, x) and p(g, x), and the factors (conditional and
marginal distributions) associated with their respective
factorizations would be inadequate.

Since the framework for MCV admits six factori-
zations, six different (but not unrelated) approaches
to this problem can be taken. As noted earlier in the
case of AV, these approaches involve different distri-
butions (in some cases) and thereby focus on different
attributes or characteristics of the two types of forecasts,
the corresponding observations, and their relationships.
Thus, a complete MCV would involve examination of
all of the conditional and marginal distributions as-
sociated with the six factorizations. Of course, some
approaches may possess more (or less) intuitive appeal,
or may be more meaningful or useful than others for
particular purposes. For example, the approaches as-
sociated with the factorizations (3)and (4), or (6) and
(8), would appear to be of particular interest, since
they represent bivariate analogues of the CR and LBR
factorizations, respectively, in absolute verification [see
(A1) and (A6)].

In view of the attention devoted recently to the suf-
ficiency relation in the context of comparative evalu-
ation (e.g., see Ehrendorfer and Murphy 1988; Krzysz-
tofowicz and Long 1991; Murphy and Ye 1990), it
may be appropriate to discuss briefly its relationship
to MCYV as described here. According to the sufficiency
relation, the forecasts fare sufficient for the forecasts
g if it can be shown that the latter can be derived from
the former by a stochastic transformation. In effect,
the sufficiency relation involves the distributions
p(f]x), p(gl x), and p(g |f). The importance of the
sufficiency relation resides in the fact that if the forecasts
[ are sufficient for the forecasts g, then all users will
prefer fto g. However, this approach to comparative
evaluation ignores the marginal distribution of the ob-
servations, p(x). Thus, from the point of view of em-
ploying verification methodology that permits recon-
struction of the basic distribution for MCV [i.e.,

p(f, g, x)], the sufficiency relation is inadequate.
Unmatched comparative verification. In this case we
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are concerned with two forecasting systems that for-
mulate forecasts under different conditions. The vari-
ables of interest are the two types of forecasts, fand
g, and the corresponding types of observations, x and
¥, respectively (x and y are referred to as the type 1
and type 2 observations). The basic framework for this
problem is the 4-variable distribution p(f, g, x, y). As
in the other cases (AV and MCV), the distribution
p(f, g, x, y) contains all of information relevant to
UCV (i.e., all of the nontime-dependent information
required to describe the statistical characteristics of both
types of forecasts, both types of observations, and their
relationships).

The distribution p(f, g, x, y) can be factored into
conditional and marginal distributions in 24 (=4!) dis-
tinct ways:

r(f, & x,y) = p(y|f, g x)p(x |f, &)p(g | )p(f),

(9)

p(f, g x,y)=pWy|f, & x)p(x|f, &)p(f|8)p(g),
(10)

p(f, 8 x,y) = p(ylf, g, x)p(g\f, x)p(x |f)p(f),
(11)

p(f. g x,y) = p(ylf, & x)p(gf, x)p(f| x)p(x),
(12)

p(f, & x,y)=pWy|f, g x)p(flg, x)p(x| g)pr(g),
(13)

r(f, & x,y)=pWy|f, & x)p(f1g, x)p(gl x)p(x),
(14)

p(f, & x,¥)=px|\f, & ip(y f, &p(g | NHp(f),
(15)

r(f, 8 x,y)=p(x\f, & v)p(y If, &)p(f18)r(g),
(16)

p(/, g x,y) = p(x|f, & v)p(e |f, ey 1 p(f),
(17)

r(f, 8 x,y) = p(x|f, & V)p(g |f, VIio(f1»)p(¥),
(18)

p(f. g x,y)=p(x|f, & Y)p(flg, vIp(¥| &)p(8),
(19)

p(f, 8, x,y)=p(x|f, g v)p(flg, yIp(gl¥)p(y),
(20)

p(f, & x,y) = p(elf, x, V) p(¥ If, x)p(x |/ )p(f),
; (21)

p(f, & x,y)=pglf, x, Ip(y If, x)p(f] x)p(x),
(22)

p(f, & x,y)=p(glf, x, vIp(x |f, oy 11)p(f),
(23)
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p(f, & x,y)=pglf, x, p(x |f, »)p(f1y)p(f),

(24)
p(f, & x,y)=p(g|f, x, )p(f1x, »)p(¥| x)p(x),
(25)
p(f, &, x,y) = p(g\f, x, p(f1x, v)p(x| ¥)p(»),
(26)
p(f, g x,¥) = p(flg. x, y)p(¥| g, x)p(x|g)p(g),
(27)
p(f, g, x,y)=p(flg, x, y)p(¥l g, x)p(g| x)p(x),
(28)
p(f, g x,y)=p(flg, x, y)p(x|g, y)p(yg)p(g),
(29)
r(f. & x,y)=p(flg, x, y)p(x|g, y)p(gly)p(¥),
(30)
p(f. g x,y)=p(flg, x, y)p(glx, y)p(¥| x)p(x),
(31)
and
p(f, g x,y)=p(flg, x, y)p(glx, y)p(x|y)p(¥),
(32)

where p(y |f, g, x) represents the conditional distri-
butions of the type 2 observations given both types of
forecasts and the type 1 observations, p(x |f, g) rep-
resents the conditional distributions of the type 2 ob-
servations given both types of forecasts, p(g |f) rep-
resents the conditional distributions of the type 2 fore-
casts given the type 1 forecasts, p(f) represents the
marginal distribution of the type 1 forecasts, etc.

As in the case of MCV, the factorizations of
p(f, &, x, y) in (9)-(32) are expressed in terms of
basic factors. The process of deriving these expressions
involves three steps in which the basic distribution is
decomposed into composite (or composite and basic)
factors in step 1, into composite and basic factors in
step 2, and then into basic factors in step 3. For com-
pleteness, the intermediate expressions obtained in
steps 1 and 2 are reproduced in appendix B. This ap-
pendix also briefly describes the relationship between
the expressions in (9)-(32) and these intermediate
expressions.

The practice of UCV is adequate if it is based on
methodology that permits reconstruction of the 4-vari-
able distribution p(f, g, x, ¥). Thus, verification prac-
tices based on any of the 24 factorizations of
p(f, &, x, y) can be adequate. In this regard, it should
be noted that UCV necessarily involves relationships
between the two types of forecasts, between the two
types of observations, and among the types of forecasts
and observations. Once again, it is generally not ade-
quate to consider only the bivariate distributions
p(f, x) and p(g, y) when undertaking comparative
verification in this context.
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Thus, 24 different (but related ) approaches to UCV
are available. As in the case of MCV, these various
approaches focus on different characteristics of the basic
variables (i.e., f, g, x, and y) and their relationships,
and some approaches may prove to be more useful
than others. The relative merits of the different ap-
proaches warrant further study, but such investigations
are beyond the scope of this paper.

¢. Complexity

Comparison of the frameworks for AV, MCV, and
UCYV provides insight into the complexity (C) of these
verification problems. Three characteristics of these
frameworks can be readily identified: 1) the number
of factorizations of the basic distribution (Cr); 2) the
number of basic factors in each factorization (Cpf);
and 3) the total number of basic factors (Cypr). These
characteristics of the frameworks for AV, MCV, and
UCYV are summarized in Table 1a. Note that Cgr also
is equal to the number of variables involved in the
basic distribution.

The complexity of the AV problem can be described
by noting that its basic distribution, p(f, x), admits
two factorizations (Cr = 2), that each factorization
involves two basic factors (Cgr = 2), and that the two
factorizations involve a total of four basic factors (Cypr
= 4)—namely, two sets of conditional distributions,
p(x |f) and p(f]| x), and two marginal distributions,
p(f) and p(x). Numerical values for these character-
istics of the AV problem appear in Table 1a, and they
provide a quantitative description of the complexity of
this problem. The choice of a particular characteristic
(or subset of characteristics ) to describe the AV prob-
lem depends on the perspective that is taken. On the
one hand, since each factorization provides the basis
for a coherent and adequate approach to the verifica-

TABLE 1. (a) Characteristics of complexity of frameworks for
absolute verification (AV), matched comparative verification (MCV),
and unmatched comparative verification (UCV). (b) Nature of basic
factors associated with frameworks for AV, MCV, and UCV, described
in terms of number of factors with k conditioning variables. See text
for additional details.

Number of basic Total number
Number of factors in each of basic
factorizations factorization factors
(@) (Cr) (Csr) (Crar)
AV 2 2 4
MCvV 6 3 12
UCv 24 4 32

Number of basic factors with & conditioning variables

(b) k=0 k=1 k=2 k=3 Total
AV 2 2 0 0 4
MCV 3 6 3 0 12
ucv 4 12 12 4 32
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tion problem, the complexity of this problem could be
characterized by Cpr (=2). On the other hand, if the
perspective is taken that it is necessary to explicitly
examine all of the basic factors to perform a complete
verification, then the problem could be characterized
by Crpr (=4).

In the case of CV, the numerical values in Table la
indicate that MCV involves 6 factorizations, 3 basic
factors in each factorization, and a total of 12 basic
factors. On the other hand, UCV involves 24 factori-
zations, 4 basic factors in each factorization, and a total
of 32 basic factors. Comparison of these numbers with
the corresponding numbers for AV provides insight
into the relative complexity of AV and CV as well as
that of MCV and UCV.

For example, in terms of the number of basic factors
(and variables) associated with each factorization, the
increase in complexity from AV to MCV—and from
MCYV to UCV—appears relatively modest. However,
in terms of the number of factorizations or the total
number of basic factors, this increase in complexity
appears quite substantial. In any event, these indices
provide the basis for a quantitative assessment of the
relative complexity of these (and other) verification
problems. '

It also is useful to consider the structure of the basic
factors associated with the respective frameworks. This
objective can be achieved by recognizing that each basic
factor is a univariate distribution conditional on k
variables (k =0, 1, 2, 3). Information concerning this
characteristic of the frameworks for AV, MCV, and
UCYV is summarized in Table 1b. The basic factors for
AV are two marginal distributions and two distribu-
tions conditional on one variable. On the other hand,
the basic factors for UCV are 4 marginal distributions,
12 distributions conditional on 1 variable, 12 distri-
butions conditional on 2 variables, and 4 distributions
conditional on 3 variables.

As yet no mention has been made of the nature of
the basic variables (continuous, discrete) or the type
of forecasts (probabilistic, nonprobabilistic). Com-
plexity, as defined here, does not depend on these fac-
tors. That is, the complexity of verification problems
is independent of the nature of the variable and the
forecast type. As we shall discover in section 3, this
statement does not hold for the dimensionality of ver-
ification problems.

3. Dimensionality of verification problems

For the purposes of this discussion of the dimen-
sionality of verification problems, it will be assumed
that the basic distributions of interest here [i.e.,
p(f, x) in the case of AV, p(f, g, x) in the case of
MCV, and p(f, g, x, y) in the case of UCV] are de-
scribed by joint (2-variable, 3-variable, and 4-variable)
empirical relative frequencies derived from a relevant
sample of forecasts and observations. These relative
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frequencies are estimates of the corresponding proba-
bilities. The dimensionality of the various verification
problems obviously depends on the dimensionality of
these basic distributions.

Specifically, the dimensionality D of verification
problems can be defined as the number of relative fre-
quencies (or probabilities) that must be specified in
order to reconstruct the basic 2-variable, 3-variable,
and 4-variable distributions of forecasts and observa-
tions. Thus, as defined, D is equivalent to the number
of degrees of freedom associated with these distribu-
tions. Using the problem of AV as an example, the
dimensionality (D,y) is the number of probabilities
required to specify p(f, x). Let I and K denote the
number of distinct forecasts and observations, respec-
tively. Then D,y = IK — 1, since the joint probabilities
must sum to one. Ifit is assumed that the climatological
probabilities of the observations, p(x), are known, then
the dimensionality is reduced from D,y to D*,v, where
D*y=IK—1—(K—1)=(—- 1)K.

A few specific examples are considered to illustrate
the dimensionality of AV (and other) problems. In the
case of nonprobabilistic (yes/no) forecasts in a di-
chotomous situation, I = K = 2 and Dpv = 3(D*,v
= 2). Thus, three probabilities must be specified to
completely describe the joint distribution p(f, x) in
this context (when the climatological probabilities are
known, only two probabilities must be specified). In
the case of probabilistic forecasts, with 7 = 11 proba-
bility values [0(0.1)1] and K = 2 observed values (0,
1), Doy = 21 and D*,y = 20. The introduction of
probabilistic forecasts leads to a substantial increase in
dimensionality in this situation (K = 2).

The values of Day (and D*,v ), for these and other
typical verification problems, are included in Table 2.
Note that the dimensionality of AV problems involving
nonprobabilistic forecasts increases rapidly as the
number of distinct forecasts and observations increases
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(e.g., Dayv = 99 when I = K = 10). Moreover, AV
problems involving multicategory (K > 2) probabilistic
forecasts exhibit particularly high dimensionality (Dav
= 197 when K = 3; see footnote in Table 2).

For CV problems, the dimensionality is even higher
because these problems involve additional variables.
In the case of MCV, for example, Dyev = IJK — 1
[and D*ycv = K(1J — 1)], where I denotes the number
of distinct type 1 forecasts, J denotes the number of
distinct type 2 forecasts, and K denotes the number of
distinct observations (it is assumed here that 7 and J
are not necessarily equal). The values of Dycv and
D*\ycv for the examples considered in conjunction with
AV problems also are included in Table 2. Note that
Dycv = 7 when I = J = K = 2 (nonprobabilistic fore-
casts in a dichotomous situation) and Dycy = 241
when I = J = 11 and K = 2 (probabilistic forecasts in
a dichotomous situation). Moreover, the dimen-
sionality attains very high values for nonprobabilistic
forecasts with many values (e.g., Dvcv = 999 when 1
= J = K = 10) and for multicategory probabilistic
forecasts (Dycy = 13067 when I = J = 66 and K
= 3).

In the case of UCV, Dycv = 1JKL — I(D*UCV
=JIJKL — K — L + 1), where K and L denote the
number of type 1 and type 2 observations, respectively
(with K and L not necessarily equal). Since UCV in-
volves an additional variable (i.e., the type 2 obser-
vations), the dimensionality is even higher for these
problems. For example, Dycy = 1Swhen I = J =K
=L=2and Dycy =483 when/=J=1land K= L
= 2 (see Table 2). As before, dimensionality increases
further still for problems involving additional catego-
ries. Note that Dycy = 9999 for I = J= K= L = 10,
and Dycy = 39204 for7=J=66and K= L = 3.

From the discussion in this section, it is clear that
the dimensionality of verification problems depends
on the treatment of the basic variables and the type of

TABLE 2. Dimensionality of some typical verification problems. Here Dayv (Dmcv, Ducv) denotes total dimensionality, and
D* v (D* ycv, D* yov) denotes dimensionality under the assumption that the climatological probabilities p(x) and p(y) are known (AV
= absolute verification, MCV = matched comparative verification, and UCV = unmatched comparative verification).

Type of Number of distinct Number of distinct Dav Dyucv Dycv
forecasts forecasts observations (D* av) (D* mcv) (D* uev)
Nonprobabilistic 2 2 3 7 15
2 (6) (13)
Probabilistic 11 2 21 241 483
20) (240) (481)
Nonprobabilistic 3 3 8 26 80
) (24) (76)
Probabilistic 66* 3 197 13067 39204
(195) (13065) (39200)
Nonprobabilistic 5 5 24 124 624
20) (120) 616)
Nonprobabilistic 10 10 99 999 9999
(90) (990) (9981)

* In the case of 3-category probabilistic forecasts, where f'= (f1, /2, f3) with f; = 0(0.1)1 (i = 1,2, 3) and f, + /2 + f3 = 1, 66 distinct forecasts

can be identified.
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forecasts. Dimensionality is high when the basic vari-
able possesses many values or is divided into a large
number of categories and/or when the forecasts are
expressed in a modestly resolved probabilistic format.
Thus, the practical consequences of the difference be-
tween probabilistic and nonprobabilistic forecasts in
this context consists of an increase in the dimensional-
ity of verification problems rather than an increase in
their complexity. The relatively high dimensionality of
some of these problems (see Table 2) raises questions
related (inter alia) to the possibility of reducing the
dimensionality of verification problems and the size of
verification datasets, and these issues are discussed in
section 4.

4. Discussion: Some implications and consequences

The discussions of the complexity and dimensional-
ity concepts in sections 2 and 3, respectively, reveal
that CV is considerably more complex than AV and
that the dimensionality of many AV and CV problems
is quite high. Since it should now be evident that ver-
ification problems are of greater complexity and higher
dimensionality than generally recognized heretofore,
several questions arise regarding the implications and/
or consequences of these concepts for verification pro-
cedures and practices. For example, what are the dan-
gers of ignoring considerations of complexity and di-
mensionality in the practice of forecast verification?
How can the complexity and/or dimensionality of
verification problems be reduced? What are the im-
plications of these new perspectives concerning the na-
ture of AV and CV problems for verification datasets?
In this section we briefly discuss these issues.

a. Dangers of ignoring complexity and/or dimen-
sionality

In the practice of forecast verification, the complexity
and dimensionality of the problem at hand are seldom
considered. For example, comparative verification of
precipitation probability forecasts under unmatched
conditions (e.g., at two different locations) is frequently
performed using a climatological skill score, with the
differences between the two sets of observations being
represented solely by the respective climatological
probabilities. This practice also assumes that skill (i.e.,
relative accuracy) is the only relevant aspect of forecast
quality. In fact, most absolute verification is performed
in terms of one or two overall performance measures
(e.g., measures of accuracy and/or skill), and these
measures generally do not permit reconstruction of the
basic distribution of forecasts and observations.

What are the dangers inherent in these practices?
First, it is evident that such practices necessarily over-
look various characteristics of the forecasts, the obser-
vations, and/or their relationship(s). With regard to
the latter (i.e., the relationship between forecasts and

MONTHLY WEATHER REVIEW

VOLUME 119

observations), important characteristics of forecast
quality may be ignored. Moreover, when a single over-
all performance measure is used to evaluate the fore-
casts of interest, the likelihood of overlooking impor-
tant characteristics undoubtedly increases as complex-
ity and/or dimensionality increase. This discussion
raises a fundamental question: under what conditions
do overall performance measures (such as traditional
measures of accuracy and skill) capture the essential
features of forecast quality? For example, what impor-
tant features of the quality of precipitation probability
forecasts are overlooked when they are evaluated using
a skill score? Moreover, to what extent does the answer
to this question vary from one dataset to another da-
taset? At the moment, little if any information exists
that bears directly or indirectly on the answers to such
questions. Nevertheless, these basic questions appear
to warrant very careful consideration in the future.

Although the “scientific”” dangers inherent in ignor-
ing complexity and /or dimensionality must await the
results of studies designed to answer the questions posed
in the previous paragraph, the “economic” dangers are
already apparent. The failure to respect the full di-
mensionality of verification problems can lead to rather
surprising results concerning the relative value of fore-
casting systems. In this regard, it should be noted that
in comparative verification, measures of forecast ac-
curacy (or skill) are frequently used as surrogates for
measures of economic value. In particular, more ac-
curate forecasts usually are assumed to be more valu-
able to users. However, Murphy and Ehrendorfer
(1987) have shown that even in a simple situation in
which only two probabilities are required to charac-
terize forecast quality completely, the use of a one-
dimensional measure of performance (e.g., a measure
of accuracy such as the Brier score) can lead to reversals
in the usual accuracy/value relationship. That is, fore-
casts with a larger (i.e., worse) Brier score actually can
be of greater value to some users. (Since forecast quality
is related to forecast value, such results also indirectly
demonstrate the scientific dangers inherent in arbi-
trarily reducing the dimensionality of verification
problems.) This result underscores the need to measure
forecasting performance in its full dimensionality, or
at least to reduce dimensionality in such a way that
the essential components of forecast quality are re-
tained and the likelihood of quality / value reversals is
minimized.

b. Reducing complexity

Since the complexity of AV problems cannot be re-
duced, this discussion will focus on ways of reducing
the complexity of MCV and UCV problems. Perhaps
the most obvious way to reduce the complexity of UCV
problems is to transform these problems into MCV
problems by comparing the forecasting systems of in-
terest under identical conditions. Such an approach
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may require that greater attention be given to the design
of forecasting experiments and/or that more effective
use be made of existing datasets. In any case, the sub-
stantial decrease in complexity achieved by reducing
an UCV problem to an MCV problem implies that
very careful consideration should be given to this ap-
proach. Of course, it is not always possible to compare
forecasting systems under identical conditions. Some
comparisons (e.g., the comparison of forecasts of the
same variable at two different locations) are funda-
mentally problems of unmatched comparative verifi-
cation,

In some situations it may be possible to invoke the
assumptions of independence or conditional indepen-
dence to reduce complexity. In the case of UCV, for
example, it might be reasonable in some circumstances
to assume that the two types of observations (x and y)
are independent. Such circumstances might include
comparisons involving observations from different time
periods at the same location or comparisons involving
observations from two widely separated locations.
When this assumption can be justified, p(y| x) = p(»)
and p(x|y) = p(x). As a result, the number of basic

* factors with one conditioning variable (i.e., k = 1) de-
creases from 12 to 10, and the total number of basic
factors associated with the UCV problem is reduced
from 32 to 30 (see Table 1b).

Conditional independence implies that two variables
are independent conditional on a third variable. For
example, in the case of MCV, the variables g and x are
conditionally independent given the variable f when
it can be shown that p(x|f, g) = p(x|f). Since
p(x1f, &) = p(x |f) implies that p(g |/, x) = p(g |f),
the assumption of conditional independence in this
context reduces the number of basic factors with two
conditioning variables (i.e., k = 2) from three to one,
and the total number of basic factors associated with
the MCYV problem is reduced from 12 to 10 (see Table
1b). The concept of conditional independence has been
employed in the context of comparative verification as
a means of investigating the incremental information
content in objective and subjective weather forecasts
(e.g., Clemen and Murphy 1986; Murphy et al. 1988).

It may be of interest here to describe briefly the re-
lationship between conditional independence and suf-
ficiency (recall the discussion of the sufficiency relation
in section 2b). Suppose that, in the context of MCV,
g and x are conditionally independent given f. Then,
it is quite easy to show that f is sufficient for g, and
proof of this result is sketched in appendix C. However,
the converse is not true; that is, sufficiency does not
imply conditional independence. Thus, conditional
independence is a stronger result than sufficiency.

¢. Reducing dimensionality

The dimensionality of verification problems can be
decreased by reducing the number of probabilities that
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must be specified to reconstruct the basic distribution.
As noted in section 3 (see also Table 2), a small re-
duction in dimensionality can be achieved when it can
be assumed that the distribution of observations p(x)
is known. This assumption is equivalent to assuming
that the sample climatology is identical to the long-
term historical climatology (an assumption that is more
likely to be satisfied as the sample size increases, under
conditions of stationarity ).

A potentially efficient and effective way to reduce
the dimensionality of verification problems is to model
the conditional and/ or unconditional distributions. In
this approach, parametric statistical models are fit to
the relevant distributions, and the evaluation of forecast
quality is then based on the parameters of the model(s).
Such an approach can lead to quite substantial reduc-
tions in dimensionality, and it has the added feature
that the effect of sampling variability on the results of
the verification process may be reduced.

Studies involving the use of statistical models to
characterize the relationship between forecasts and ob-
servations are for the most part of relatively recent vin-
tage. In this regard, parametric models have been em-
ployed in some decision-analytic investigations of the
value of weather and climate forecasts. For example,
Katz et al. (1982 ) used a bivariate normal distribution
to characterize the relationship between daily mini-
mum temperature forecasts (expressed in a nonprob-
abilistic format) and the corresponding observations.
In effect, such a model reduces the dimensionality of
the verification problem to (no more than) five di-
mensions, represented by two means, two variances,
and a covariance.

Of more direct relevance to this discussion, Krzysz-
tofowicz and Long (1991) used a parametric modeling
approach to reduce the dimensionality of an MCV
problem involving objective and subjective precipita-
tion probability forecasts. Specifically, they used beta
densities to fit the conditional distributions (or likeli-
hoods) p(f] x) and p(g| x) in order to facilitate their
study of the conditions under which one set of forecasts
could be judged to be sufficient for another set of fore-
casts. In effect, this approach reduced the dimensional-
ity of the problem to four dimensions, represented by
the two parameters associated with the respective beta
distributions.

It should be noted that it may not always be possible
to find parametric models that fit the relevant distri-
butions in a satisfactory manner. For example, Clemen
and Winkler (1987) used a normal log-odds model to
fit the likelihood functions [i.e., p(f| x)] of samples
of precipitation probability forecasts and the corre-
sponding observations in a calibration and combining
study. They found that these models tended to yield
distributions that were appreciably more skewed than
the empirical distributions.

In the absence of reasonable parametric models, it
still may be possible to reduce the dimensionality of
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verification problems when the empirical probabilities
that constitute the basic distribution exhibit relatively
small or negligible differences for various combinations
of forecasts and observations. In this context, we can
distinguish between warranted and unwarranted re-
ductions in dimensionality. Roughly speaking, reduc-
tions in dimensionality would be warranted when these
probabilities are indistinguishable (in a statistical
sense ); conversely, they would be unwarranted when
the probabilities are clearly distinguishable. Statistical
tests could be used to determine whether or not such
differences are distinguishable and, as a result, whether
or not corresponding reductions in dimensionality are
justified.

d. Implications for verification datasets

The fact that forecast verification problems are of
greater complexity and higher dimensionality than
generally recognized heretofore has important impli-
cations for verification datasets. In particular, since
both AV and CV involve the evaluation of conditional
distributions (and measures based on conditional dis-
tributions), adequate verification based on the frame-
works described in this paper requires larger datasets
than those required for traditional verification proce-
dures involving the computation of overall perfor-
mance measures. Moreover, since the degree of con-
ditionality associated with the framework for MCV
(UCYV) is greater than that for AV (MCV), larger da-
tasets generally will be required for MCV (UCV) than
for AV (MCV). The practical significance of this sam-
ple-size issue will become clear only after some addi-
tional experience is gained in applying the respective
frameworks.

If it is possible to model conditional distributions in
a satisfactory manner, then the impact of the sample-
size problem may be reduced. In any case, it should
be possible to perform considerably more informative
and insightful CV studies than those conducted here-
tofore without evaluating the distributions that involve
the highest degree of conditionality (e.g., k = 3 in Table
1b). Moreover, in some verification studies, consid-
eration could be given to combining datasets from dif-
ferent regions (or locations) or time periods to obtain
large enough samples to permit application of (at least)
portions of the CV frameworks described here.

In summary, the size of the dataset may limit the
evaluation of forecasting performance in its full di-
mensionality in some verification studies. However,
sample sizes generally should be adequate to permit
the examination of some conditional distributions and/
or conditional performance measures. Reliable infor-
mation of this type will yield considerably more insight
into the basic characteristics of forecast quality than
that provided by overall performance measures.
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5. Conclusion

This paper represents a contribution toward the de-
velopment of a deeper understanding of the true nature
of forecast verification problems. With this overall goal
in mind, these problems have been considered from
the perspective of general frameworks for absolute and
comparative verification. The framework for absolute
verification, described in MW87, is based on the bi-
variate distribution of forecasts and observations and
on factorizations of this distribution into conditional
and marginal distributions. This framework was ex-

- tended here to frameworks for the problems of matched

and unmatched comparative verification. The latter
are based on 3-variable and 4-variable distributions,
respectively, as well as on factorizations of these dis-
tributions into conditional and marginal distributions.
Since the basic distributions—and each of the respec-
tive factorizations—contain all of the nontime-depen-
dent information relevant to forecast verification, the
practice of verification is adequate only if it is possible
to reconstruct these distributions from the methodology
actually employed. Moreover, since different distri-
butions relate to different characteristics of perfor-
mance, forecast verification can be said to be complete
only if it involves consideration of the basic factors
associated with all of the relevant factorizations.

Two fundamental characteristics of verification
problems—complexity and dimensionality—were de-
scribed here, and quantitative measures of these char-
acteristics were defined. Complexity relates to the
structure and components of the frameworks that un-
dergird such problems. Several measures of complexity
were identified, including indices defined in terms of
the number of factorizations, the number of basic fac-
tors associated with each factorization, and the total
number of basic factors associated with a particular
framework. Although it has been understood heretofore
(implicitly if not explicitly) that comparative verifi-
cation is more complex than absolute verification and
that unmatched comparative verification is more com-
plex than matched comparative verification, these in-
dices can serve as quantitative measures of the relative
complexity of these problems. Moreover, according to
the definitions of complexity introduced here, this
characteristic of verification problems is not influenced
by the format of the forecasts. Within a given frame-
work, the complexity of verification problems is the
same whether the forecasts are expressed in a proba-
bilistic or nonprobabilistic format.

Dimensionality relates to the number of probabilities
that must be specified, within a particular framework,
in order to reconstruct the basic distribution relevant
to that framework. Thus, the dimensionality of a ver-
ification problem is one less than the product of the
number of distinct combinations of forecasts and ob-
servations (note that comparative verification problems
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involve two types of forecasts and one or two types of
observations). Examination of the dimensionality of
several typical verification problems revealed that

comparative verification problems—and all verifica-

tion problems involving probabilistic forecasts or non-

probabilistic forecasts with many distinct forecast val-

ues or categories—possess relatively high dimension-

ality.

In the process of developing quantitative definitions
of complexity and dimensionality, it has become evi-
dent that comparative verification problems are rela-
tively complex and that many absolute and compar-
ative verification problems are of relatively high di-
mensionality. Several questions arise regarding the
practical implications of these concepts. These ques-
tions relate to the dangers of ignoring complexity and
dimensionality in conducting verification studies, the
possible ways of reducing complexity and/or dimen-
sionality, and the consequences of these conceptual
developments for verification datasets. The dangers in-
volved in the current practice of (largely) ignoring
complexity and dimensionality can be summarized by
indicating that such an approach may lead to erroneous
conclusions regarding the absolute and relative quality
and value of alternative forecasting systems.

Several ways of reducing complexity or dimen-
sionality were briefly discussed. For example, it may
be feasible to design some forecasting studies in such
a way that unmatched comparative verification prob-
lems are transformed into matched comparative ver-
ification problems, with the important benefit that the
underlying framework for the latter is considerably less
complex than that for the former. Moreover, it may
be possible to invoke assumptions such as indepen-
dence or conditional independence to simplify the
structure of verification problems. This latter possibility
clearly warrants further investigation.

The use of parametric statistical models of the con-
ditional or unconditional distributions that constitute
the basic factors in the underlying frameworks offers
a promising means of reducing the dimensionality of
verification problems. Comparative verification could
then be based on the parameters of these distributions,
yielding a substantial reduction in dimensionality. In
addition to reducing dimensionality, the use of such
models would serve to minimize the effects of sampling
variability on the results of forecast verification studies.
Moreover, it may be possible to reduce the (apparent)
dimensionality of some verification problems by rec-
ognizing that distinctions between some values of the
relevant variables are unwarranted (as revealed through
comparisons of the respective empirical probabilities).

The implementation of adequate verification pro-
cedures and practices implies the need for relatively
large datasets. In practice, however, the sample sizes
of the relevant datasets will be limited, and evaluators
will be required to make judicious compromises be-
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tween traditional practices based on one or two overall
measures of performance and adequate procedures as
defined here. Nevertheless, since traditional procedures
are clearly inadequate, the available datasets should be
exploited to the greatest extent possible to obtain de-
tailed insight into the basic characteristics of forecasting
performance.

Before considering possible directions for future
work in this area, it seems appropriate to underline
once again the deficiencies inherent in current prac-
tices. In this regard, studies based solely on one or two
overall measures necessarily fail to describe potentially
important characteristics of forecasting performance.
In fact, except in the simplest situations, approaches
involving overall performance measures may be in-
adequate in this sense. How serious is the loss of in-
formation concerning forecasting performance that
occurs when the complexity and/or dimensionality of
verification problems is arbitrarily reduced by restrict-
ing the scope of the methodology actually employed?
Since explicit recognition of the concepts of complexity
and dimensionality—and their implications for veri-
fication procedures and practices—is quite recent, this
question cannot be answered at the present time.
However, it appears to be a very fundamental question
and a question that needs to be addressed by those
concerned with developing a coherent, adequate (or
complete), and useful body of verification methods.

Future work in this context should include studies
of alternative ways of reducing complexity and dimen-
sionality, as well as efforts to extend these concepts to
other verification problems. Since many such problems
are relatively complex and of relatively high dimen-
sionality, it is essential to find rational ways of simpli-
fying these problems. This work will require a sound
knowledge of verification problems (i.e., frameworks,
methods, etc.), as well as a willingness to explore and
test the appropriateness of various assumptions and
models using real data. With regard to the concepts of
complexity and dimensionality themselves, it would
be desirable to extend these concepts to other verifi-
cation problems, including problems involving fore-
casts expressed in the form of multidimensional fields.
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APPENDIX A

Matched Comparative Verification: Decompositions
Involving Composite and Basic Factors

The expressions obtained from the first step in
the process of decomposing the basic distribution
p(f, g, x) into conditional and marginal distributions
are presented in this appendix. These expressions in-
volve basic factors and composite factors, and they can
be written as follows:

p(f, g x) = p(x|f, &)p(/, g), (A1)

p(f, & x) = p(g If, x)p(/, X), (A2)

p(f. g x) = p(flg, x)p(g, x), (A3)

p(f, g, x) = p(g, x |f)p(f), (A4)

p(f, g, x) = p(f, x| 8)p(g), (AS)
and

p(f, g x) = p(f, gl x)p(x). (A6)

Note that each expression contains one composite fac-
tor and one basic factor.

The second step in the process, which leads to (3)-
(8), involves decomposing the composite factors in
(A1)-(A6) into basic factors. For example, p(f, g) in
(A1) can be decomposed into p(g|f)p(f) or
p(f1g)p(g), yielding (3) and (4), respectively. Anal-
ogously, p(g, x| f) in (A4) can be decomposed into
p(x|f, 8)p(g |f) or p(g |f, X)p(x |f), yielding (3) and
(5), respectively. Thus, this step leads to a set of 12
(=6 X 2) expressions, with each of the six factorizations
[1e., (3)-(8)] appearing twice in this set.

APPENDIX B

Unmatched Comparative Verification:
Decompositions Involving Composite
and Basic Factors

The expressions obtained from the first and second
steps in the process of decomposing the basic distri-
bution p(f, g, x, y) into conditional and marginal dis-
tributions are presented in this appendix. These
expressions involve basic factors and/or composite
factors, and they can be written as follows:

p(f. 8 x,y) = p(ylf, & x)p(/, & X),

= p(y I/, & x)p(x |f, &)p(/, &),

= p(y |/, & x)p(g |f, x)p(f, x),

= p(y\f, & x)p(flg, x)p(g, x), (Bl)
p(f. & x,y)=p(x|f, & ¥Ip(/, & ¥),

MONTHLY WEATHER REVIEW

VOLUME 119

= p(x|f, & v)p(y |1, 8)p(/, &),

= p(x\|f, & »)p(g \f, V)p(f, »),

= p(x|f, g y)p(flg, y)r(g,y), (B2)
(/. & x,y) = p(glf, x, yIp(f, X, y),

= p|fs x, v)p(y IS, x)p(f, x),

= p(g Ifs x, vIp(x |f, »Ip(fs ¥),

= p(g|fs x, y)p(f1x, y)p(x, ), (B3)
p(f, & x,y)=p(flg, x,y)p(g, X, y),

= p(flg, x, y)p(ylg, x)p(g, x),

= p(flg, x, y)p(x|g, y)r(8, ¥),

= p(flg, x, y)p(glx, y)p(x, y), (B4)
r(f, & x,y) = p(x,y|f, &)p/, 2),

=p(y /. & x)p(x|f, &)p(/, &),

=p(x |f. & y)p(y |f, &)p(f, 8),
(/. & x,y) = p(g, ¥ If, x)p(/, x),

= p(y|f, & x)p(g |f, x)p(f, x),

= p(g If, x, V)p(y |f, x)p(f, x),
r(f. & x,y) = p(g, x|f, )p(f, ),

= p(x|f, & »Ip(g |f, Ip(f, ¥),

= p(glf, x, vIp(x |1, y)p(f, »),
r(f, & x,y) = p(f, ylg, x)p(g, x),

=p(yf, & x)p(f1g, X)p(g, x),

= p(f1g, x,y)p(¥| g, x)p(g, x), (B8)
p(f, g x,y) = p(f, xlg, y)r(g, y),

= p(x\f, & ¥Io(f1g, ¥)p(g, ¥),

= p(flg, x, y)p(x|g, y)r(g,y), (BY)
p(f, & x,y) = p(f, glx, y)p(x, ),

= p(g |fs x, VIp(flx, y)p(x, ),

= p(f1&, x, y)p(glx, y)p(x, ),(B10)
p(f, & x,y) = p(g, x, y | /)p(f),

=p(x,y|f, &)p(g |/p(f),

= p(g, y |f, x)p(x |\/)p(f),

(B5)

(B6)

(B7)

= p(g, x If, ey 1N)p(f), (B11)
r(f. g x,y) = p(f, x, y| £)p(g),

= p(x, y|f, &)p(f18)p(8),

= p(f, vl g x)p(x| 8)p(8),

= p(f, x|l g, y)p(¥| 8)pr(8), (B12)
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p(f, & x,y) = p(/, & y|x)p(x),
= p(g, ¥ |f, x)p(f| x)p(x),
= p(f, ylg, x)p(gl x)p(x),

= p(f, gl x, y)p(y| X)p(x), (B13)
and
p(f, & x,y) = p(f, & x| y)p(y),
= p(g, x |1, »)p(f1y)p(),
= p(f, x|l &, y)p(gl y)p(¥),
= p(f, glx, y)p(x|y)p(y). (B14)

Examination of (B1)-(B14) reveals that each expres-
sion on lines 2-4 of (B1)-(B4) and (B11)-(B14)—
and each expression on lines 2-3 of (B5)-(B10)—
contains one composite factor and two basic factors.
The third step in the process, which leads to (9)-
(32), involves decomposing the composite factors on
lines 2-4 of (B1)~(B4) and (B11)-(B14)—and lines
2-3 of (B5)-(B10)—into basic factors. For example,
p(f, g) on line 2 of (B1) can be decomposed into
p(g1f)p(f) or p(f| g)p(g) yielding (9) and (10), re-
spectively. Analogously, p(x, y |f, g) on line 2 of (B5)
can be decomposed into p(¥ |f, g, x)p(x |f, g), which
also yields (9) and (10), respectively, when p(f, g) is
decomposed into its two possible expressions. Thus,
this step leadstoaset of 72 (=8 X 3 X2+ 6 X2 X 2)
expressions, with each of the 24 factorizations [i.e.,
(9)-(32)] appearing three times in this set.

APPENDIX C
Conditional Independence and Sufficiency

Consider an MCV problem in which forecasting
systems F and G produce forecasts fand g, respectively,
and the observing system X produces the corresponding
observations x. In this context, conditional indepen-
dence between G and X can be defined as follows: G
and X are conditionally independent given F if and
only if p(x |f, g) = p(x |f). Under this condition, the
basic trivariate distribution p(f, g, x) can be written
as follows:

p(f, & x)=p(x\f, g)p(f, &)
= p(x |p(g | Hp(f)
=p(g |/, x)

=pg 1Np(f1x)p(x). (C1)
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Summing both sides of (C1) over all values of fyields
2 p(f, 8, x) = p(g, x) = p(g| x)p(x)
!

= 2 pgNp(f1x)p(x), (C2)
f

or

p(glx)= 2 p(gNp(f1x). (C3)
S

Under the assumption that the stochastic transfor-
mation relating the two sets of forecasts is represented
by the function p(g |f), (C3) is identical to the defi-
nition of sufficiency (e.g., see Ehrendorfer and Murphy
1988, pp. 1758-1759). In other words, (C3) indicates
that forecasting system F is sufficient for forecasting
system G. Thus, conditional independence implies suf-
ficiency. As noted in the text, the converse is not true;
that is, sufficiency does not imply conditional inde-
pendence.
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