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ABSTRACT

From the theory of sufficient comparisons of experiments, a measure of skill is derived for categorical forecasts
of continuous predictands. Called Bayesian correlation score (BCS), the measure is specified in terms of three
parameters of a normal-linear statistical model that combines information from two sources: a prior (clima-
tological) record of the predictand and a verification record of forecasts. Three properties characterize the BCS:
(i) It is meaningful for comparing alternative forecasts of the same predictand, as well as forecasts of different
predictands, though in a limited sense; (ii) it is interpretable as correlation between the forecast and the predictand;
and, most significantly, (iii) it orders alternative forecast systems consistently with their ex ante economic values
to rational users (those who make decisions by maximizing the expected utility of outcomes under the posterior
distribution of the predictand ). Thus, by maximizing the BCS, forecasters can assure a utilitarian society of the

maximum potential economic benefits of their forecasts.

1. Introduction
a. Skill measures

The performance of a forecast system is often char-
acterized in terms of two attributes of forecasts: the
lead time and the skill. The lead time of a forecast is
the time interval elapsed from the instant up to which
the data for preparing the forecast have been observed
to the earliest instant at which the actual state of the
predictand could be observed. The skill of a forecast
lacks a unique definition. Instead, it is customarily de-
fined in terms of some measure designed to capture
one’s intuitive notion of the forecast skill, quality,
goodness, or informativeness—the attributes which we
shall view here as synonyms.

Among frequently encountered skill measures for
categorical forecasts of continuous predictands, one
finds (Murphy and Daan 1985; Murphy and Epstein
1989): (i) a metric of distance between the forecasted
and the actual state, such as the mean square error or
the mean absolute error; (ii) a statistic of association,
such as covariance or correlation; and (iii ) a normalized
metric of distance—a skill score. For a fixed lead time,
a skill score enables one to compare the performance
of different forecast systems, or to gauge the perfor-
mance of a given system relative to two limiting cases:
a perfect forecast, specifying the actual state; and a na-
ive forecast, specifying a mean of the state (as in a
climatological forecast) or an extrapolation of the latest
state observation (as in a persistence forecast).

Corresponding author address: Professor Roman Krzysztofowicz,
Department of Systems Engineering, University of Virginia, Thornton
Hall, Charlottesville, VA 22901.

© 1992 American Meteorological Society

Popular skill measures have two snags. First, different
skill measures may imply different preference orderings
of alternative forecast systems, and there are no nor-
mative principles for rationally reconciling such in-
coherences. Second, these skill measures have no as-
sured relevance to the actual or potential uses of fore-
casts in decision making: planning, management, and
operation of weather-sensitive activities. That is to say,
a modification of the forecast system perceived as an
improvement by forecasters on the basis of a skill mea-
sure does not necessarily imply an improvement to the
users. The converse is also true: a deterioration of the
skill measure does not necessarily imply inferior fore-
casts to their users.

b. Utilitarian criterion

In a utilitarian society, the ultimate measure for
evaluating and comparing systems producing forecasts
for public use, at a fixed cost, is the ex ante economic
value of forecasts. This value is a function of both the
lead time and the skill of forecasts. When comparing
alternative forecast systems, or alternative improve-
ments of a given system at a specified cost, one should
choose the alternative assuring society of the highest
economic value. This value is equal to the sum of the
economic values accrued by all forecast users. Inas-
much as each user has his own utility function for out-
comes of his activity, the utilitarian approach neces-
sitates performing a decision analysis for each individ-
ual user. This is an enormous undertaking. In practice,
the decision analysis is performed for a few represen-
tative users, and the results are extrapolated to a POpP-
ulation (Krzysztofowicz and Davis 1983); for agricul-
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tural users, the decision analysis is performed per acre
of crops, so the results can be extrapolated to a region
(Katz et al. 1982). But even such approximate analyses
may be too costly for routine evaluations of forecast
systems.

Recent developments in Bayesian decision theory
offer a promise. They have led to operationalizations
of the binary relation of sufficiency that enables one
to order alternative forecast systems according to the
utilitarian criterion, yet without the necessity of esti-
mating the economic values themselves. A practical
procedure for establishing such a preference order is
the subject of this article.

¢. Overview

The procedure is developed for forecasts which are
categorical, in the sense that they do not convey the
degree of uncertainty, but specify only point estimates
of continuous predictands such as temperature or pre-
cipitation amount. Two measures of skill, sufficient for
ordering alternative forecasts consistently with their ex
ante economic values to the users, are derived in pro-
gression: the sufficiency characteristic (SC), for order-
ing forecasts of the same predictand; and the stan-
dardized sufficiency characteristic (SSC), for ordering
forecasts of different predictands. The SSC implies the
SC. Next, a relationship is derived between the SSC
and a Bayesian estimator of correlation between the
forecast and the predictand. Taking advantage of this
relationship, we propose the Bayesian correlation score
(BCS) as a utilitarian measure of forecast skill. A plot
of the BCS versus the lead time of the forecast sum-
marizes the performance tradeoffs available to the
users.

The procedure is illustrated with numerical examples
for forecasts of runoff volumes during the snowmelt
season prepared by the Soil Conservation Service and
the National Weather Service. The snowmelt season
covers several months, depending on the geographic
location: from January to May in Arizona, from April
to September in Montana. Forecasts are issued at the
beginning of each month from January through May
for 533 river gauging stations in 11 western states. The
first forecast is thus prepared with the lead time of 5-
9 months, depending upon the location. Each subse-
quent forecast is a revision of the earlier forecast. An
example referred to throughout the article is based on
the verification record for a gauging station on the
Weiser River near Weiser, Idaho. The snowmelt season
covers four months from April through July; the unit
in which the runoff is expressed, both forecasted and
actual, is the percentage of the 25-yr (1961-1985) mean
seasonal runoff volume (414 100 acre-feet).

2. Models of predictand and forecasts

We begin with a description of models that provide
statistics necessary for defining the skill measures.
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There are two models: the model of a predictand, called
the prior distribution; and the model of forecasts, called
the likelihood function.

a. Prior distribution

Let w denote a continuous predictand. The uncer-
tainty about w that exists before the preparation of any
forecast is described by a prior probability density
function g. Suppose this density is normal with the
mean and variance:

E(e) = M,
var(w) = S2. (D)

The prior parameters M and .S may be estimated from
a climatological record. In principle, this should be the
longest record available that satisfies the hypothesis that
the process generating w has been stationary.

b. Likelihood function

A categorical forecast specifies a point estimate x of
w. Let f( x| w) denote the relationship between state w
and its forecast x. For a fixed w, the function f(- |w)
represents the probability density function of the fore-
cast x. For a fixed x, the function f( x| +) represents
the likelihood function of the state w. The likelihood
functions characterize the predictive capabilities of the
forecaster from the viewpoint of a user.

We shall concentrate on a particular form of f; aris-
ing when the relationship between w and x is modeled
in terms of a linear equation

x=aw+ b+, (2)

where a and b are fixed parameters, and 6 is a random
variable, stochastically independent of w, and having
a normal density k with moments

E@)=0,

var(9) = ¢2.

3)

Consequently, the likelihood function is specified by
the relation: f( x|w) = k(x — aw — b). It follows that
f(+ |w) is a normal density with moments

E(x|lw)=aw + b,

var(x|w) = o2

(4)

The likelihood parameters a, b, and ¢ may be es-
timated via the least-squares method applied to a his-
torical or simulated record of forecasts and actual states.
An illustration of the procedure in Fig. 1 shows the
sample points, a plot of the conditional mean E(x|w)
versus w (the regression line), and estimates of the pa-
rameters.

The posterior distribution of the state w, conditional
on forecast x, is not needed for our development. Nev-
ertheless, it is presented in appendix A for the sake of
completeness. Forecasters may employ it as a cali-
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FiG. 1. Estimation of the likelihood function for a seasonal runoff
volume forecast. (Weiser River, January forecast, historical record
1971-1988.)

brating filter, while users may input it into their deci-
sion procedures.

¢. Likelihood parameters

The normal-linear model of forecasts plays an im-
portant practical role: it enables us to summarize the
entire verification record in just three parameters that,
from a decision-theoretic point of view, completely
characterize the forecaster’s predictive capabilities. If
forecasts were perfect, then we would have a = 1, b
=0, and o = 0. If forecasts were randomly generated
from an arbitrary distribution having mean N and
standard deviation T, then we would obtain a = 0, b
= N, and ¢ = T; such forecasts would be worthless, of
course. These limiting cases suggest an interpretation
of the likelihood parameters: the slope a measures
forecast information (or “signal” carried by the fore-
cast), while the standard deviation ¢ measures forecast
uncertainty (or “noise” in the forecast). Intuitively,
one may anticipate that as the signal increases and the
noise decreases, forecasts become more valuable. We
shall revisit this interpretation after deriving the sup-
porting mathematical expressions.

Per traditional definition, forecasts are said to be
unbiased if E(x) = E(w). Accordingly, the intercept
b could be interpreted as a conveyor of the forecast
bias. A bias is present whenever b # (1 — a)M, the
condition that arises as follows. Under model (1)-(3),
the mean of the predictand is E(w) = M, while the
mean of the forecast, derived in appendix A, is E(x)
= gM + b. Hence, when forecasts are unbiased, we
find b = (1 — a) M; and since the intercept b is a func-
tion of the slope a, just two parameters, @ and o, sum-
marily characterize the forecaster.

As a property of categorical forecasts, the unbiased-
ness, in the sense of E(x) = E(w), is inconsequential
to rational users, while it may be either desirable or
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detrimental for other users, depending upon the nature
of their decision rules and shapes of their utility func-
tions. These facts explain why the parameter b will not
appear in the skill measures derived from the utilitarian
point of view. (Other users are those who employ sub-
optimal decision rules, of which there are many; for
instance, a common suboptimal rule is to ignore fore-
cast uncertainty and prescribe a decision as if the cat-
egorical forecast were perfect.)

d. Forecast error

To further interpret the normal-linear model of
forecasts, it is helpful to consider the forecast error: e
= X — w. A simple transformation of (2) gives

e=(a— Dw+b+0. (5)

Two cases may be distinguished. If ¢ # 1, then the
error e depends linearly on the actual state w. If @ = 1,
then e is stochastically independent of w. The density
of ¢, conditional on w, is normal with moments:
E(elw)=(a— 1w+ b,
var(e|w) = o°.

(6)

The marginal density of ¢ is again normal with mo-
ments:

E(e)=(a— )M+ b,
var(e) = (a — 1)°8? + o2 (7N

A popular measure of forecast skill is the mean
square error

E(€?) = var(e) + E*(¢), (8)
or its transformation, the quadratic score
_ E(e?)
Qs =1 var(w) ’ )

where var(w) = E[(M — w)?] = S? represents the mean
square error of a forecast that always specifies the cli-
matological mean E(w) = M. Relations (7)-(9) reveal
the structure of both measures in terms of the param-
eters of the prior distribution and the likelihood func-
tion. We shall demonstrate later that, unless the forecast
and the posterior mean coincide, x = E(w| x), the
mean square error and the quadratic score are not ra-
tional measures of forecast skill from the utilitarian
point of view.

3. Decision-theoretic framework

a. Dominance order of forecasts

Suppose each user makes a decision based on fore-
cast x by following the Bayesian principles of rationality
(Harsanyi 1978). Accordingly, having assessed his prior
density g and estimated the likelihood functions f, the
user obtains the posterior density of the state w, con-
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ditional on forecast x, and then finds the optimal de-
cision that maximizes his expected utility of outcomes
under the posterior density. The ex ante economic
value of the forecast depends thus upon three elements
of the user’s decision model: the prior density g, the
likelihood functions f, and the utility function # (which
encodes the user’s preferences for outcomes of his de-
cisions).

Let us turn now to the problem of comparing two
forecast systems, say i and j, producing, with identical
lead times, forecasts x; and x; of the same predictand
w. In general, the ordering of forecasts in terms of their
economic values is user dependent. We are interested,
though, in a special situation wherein each user indi-
cates the same preference order between x; and x;. For
if such a unanimous order exists, it is the preferred
order for society as a whole. Formally, this situation is
described as follows:

Definition. Forecast x; dominates forecast x; if for
every prior density g and utility function u, forecast x;
has an economic value at least as high as forecast x;.

The question now arises whether it might be possible
to infer the dominance order between forecasts x; and
x; solely from their likelihood functions f; and f;. This
avenue is investigated next.

b. Relation of sufficiency between forecasts

A preference order between forecasts, consistent with
their dominance order, may be established via a binary
relation of sufficiency defined in terms of the likelihood
functions. Introduced originally by Blackwell (1951,
1953) for the purpose of comparing statistical experi-
ments, the concept of sufficiency has been recently re-
vived and applied in comparisons of forecasts by Al-
exandridis and Krzysztofowicz (1982), DeGroot and
Fienberg (1982, 1986), Ehrendorfer and Murphy
(1988), Krzysztofowicz and Long (1990), and others.

Definition. Forecast x; is sufficient for forecast x; if
there exists a stochastic transformation—a family of
conditional densities ¥, such that for every w and x;,

fsle) = [ Woglzoficulords.  (10)

Insight into the sufficiency relation may be obtained
by considering the task of simulation of forecasts
(DeGroot 1970, p. 434; Alexandridis and Krzyszto-
fowicz 1982). For a fixed state w, forecast x; can be
generated from the density f;(+ |w). Forecast x; can be
generated either in one step from the density f(- |w)
or, according to (10), in two steps. First, x; is generated
from f; (- |w); next, given this x;, x; is generated from
(- | x;). Thus, in comparison with the generator of
X;, the two-step generator of x; involves an auxiliary
randomization. One may expect, therefore, that this
“additional randomness™ of forecast x;, in comparison
with forecast x;, will translate into a consistent differ-

KRZYSZTOFOWICZ

211

ence in the evaluation of performance. This is indeed
the case, as Blackwell’s theorem attests: if forecast x;
is sufficient for forecast x;, then x; dominates x;.

We shall next harness this general theoretical frame-
work for comparing forecasts in rationalizing a new
measure of the forecast skill. This measure evolves
through three forms, and we derive them progressively.

4. Sufficiency characteristic

Suppose a forecast is characterized in terms of the
likelihood function (2)~(4). The sufficiency charac-
teristic (SC) of such a forecast is defined as the ratio
of the conditional standard deviation of the forecast
error (a measure of “noise” in the forecast) to the ab-
solute value of the slope coefficient of the regression
line between the forecasted and actual states (a measure
of “signal” carried by the forecast):

sc=-2
lal

(11)

The units of the SC are the same as the units of the
forecast x. For the perfect forecast, SC = 0. For the
forecast produced by guessing, or a random number
generator, SC = co.

In order to rationalize the SC as a measure of the
forecast skill, let us suppose that the predictand w is
forecasted by two systems, say i and j. System n (n
= i, j) issues forecast x,, having likelihood parameters
(a,, b,, ¢,) and the sufficiency characteristic SC, = o,/
|a,]. The comparison of these forecasts is governed by
the following theorem (Krzysztofowicz 1987): Forecast
x; is sufficient for forecast x; if, and only if,

SC; < SC;. (12)

Now recall that if forecast x; is sufficient for forecast
X;j, then x; dominates x;. Consequently, the ordering
of alternative forecasts in terms of their SCs (from the
lowest to the highest) coincides with the ordering of
forecasts in terms of their ex ante economic values
(from the highest to the lowest) for each user, and
thereby for society as a whole.

In summary, a forecaster who evaluates his perfor-
mance in terms of the SC, and who chooses a new
forecast system or an improvement of the existing sys-
tem by minimizing the SC, acts as if he were maxi-
mizing the ex ante economic benefit of forecasts to
each user. In that sense, the SC constitutes a sufficient
measure of the forecast skill from the utilitarian point
of view.

5. Standardized sufficiency characteristic

a. Motivation and definition

In some situations, it may be desirable to compare
the performance of forecasts of different predictands.
Evaluations of seasonal snowmelt runoff forecasts call



212

for such comparisons. For instance, the Yellowstone
River near Billings, Montana, receives in January a
forecast of the runoff volume during April-September,
and in May a forecast of the runoff volume during
May-September. Thus, not only is the lead time of
these forecasts different, but also the predictand. In
other situations, one may wish to compare the perfor-
mance of forecasts of the same quantity, say daily
maximum wind speed, for different stations. Still in
other situations, it may be important to compare the
performance of forecasts of different quantities, such
as the mean seasonal temperature and the mean sea-
sonal precipitation, in order to prioritize the needs for
improving various forecasting services.

Suppose a predictand has the prior density specified
by (1) and its forecast is characterized in terms of the
likelihood function (2)-(4). The standardized suffi-
ciency characteristic (SSC) of such a forecast is defined
as the ratio of the SC to the prior standard deviation
of the predictand: :

g
la| S~

The SSC is dimensionless. For the perfect forecast, SSC
= 0. For the forecast produced by guessing, or a random
number generator, SSC = 0.

SSC =

(13)

b. Interpretation

Let us now consider two different predictands and
their forecasts, both indexed by n(n = i, j). Predictand
wy has prior parameters (M, S,), and its forecast X,
has likelihood parameters (a,, b,, 0,) and the stan-
dardized sufficiency characteristic SSC,, = ¢,/]a,|S,.
In appendix B, we justify the following statement: fore-
cast x; of predictand w; is sufficient for forecast x; of
predictand w; if, and only if,

SSC; < SSC;. (14)

The interpretation of this sufficiency relation in
terms of economic values of forecasts is not straight-
forward. We are comparing not only different forecasts,
but also different predictands, which may have very
different uses in decision making. We must, therefore,
resort to an abstract concept of a standardized decision
problem. Imagine a user whose utility of outcomes de-
pends upon his decision and a standard normal variate
v ~ N(0, 1). This variate may be obtained from either
predictand through the usual standardization:

(15)

Likewise, the corresponding forecast of » may be ob-
tained:

(16)
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Furthermore, imagine that the user is free to choose
the predictand, w; or wj, that will generate » and con-
sequently the outcome of his decision. Since both pre-
dictands give the same prior distribution of v ~ N(O0,
1), they offer no basis for choice. If, however, the user
could obtain a forecast of either predictand, then he
could choose between z; and z;. In appendix B we prove
that condition (14) is equivalent to the statement: z;
is sufficient for z;. Next, Blackwell’s theorem may be
invoked to conclude that z; dominates z;. Therefore,
the user would prefer z; over z;. In other words, the
user would choose predictand w; as the outcome-gen-
erating variable and employ its forecast x; in decision
making,.

This interpretation of the sufficiency condition (14)
could be summarized like this: if forecast x; of predic-
tand w; is sufficient for forecast x; of predictand wj,
then, in every standardized decision problem, the pre-
dictand—forecast pair (w;, X; ) has the ex ante economic
value at least as high as the pair (w;, Xx;) does.

c. _Distinction between SSC and SC

Our final discussion is devoted to the distinction be-
tween sufficient comparisons of (i) forecasts of the same
predictand and (ii) forecasts of different predictands.
The first type of comparisons is solely between forecasts
and involves their likelihood functions. The second
type of comparisons is between predictand-forecast
pairs and involves both the prior distributions and the
likelihood functions. To illuminate these distinctions,
let us consider, for instance, forecasts of daily maxi-
mum wind speed for two locations, say i and j. Suppose
that from climatological records one estimated S; > S;,
implying a larger natural variability in the first location.
Furthermore, suppose that from forecast verification
records (which need not overlap with the climatological
records) one estimated (a;, o;) and (a;, o;) and found
SC; = SC,. Hence, SSC; < SSC;, demonstrating that
when the climatological variability of the predictands
is taken as a benchmark, the forecast for location i
exhibits a higher skill than the forecast for location j.
This preference order may also be interpreted in terms
of economic values of forecasts, though in a restricted
sense, applying only to users confronted with a stan-
dardized decision problem.

6. Bayesian correlation score

The SC and SSC have been presented in their par-
simonious forms. Inasmuch as both characteristics are
ordinal scales, they may always be transformed mono-
tonically, without affecting the resultant preference or-
der of forecasts. While the admissible transformations
are endless, there is one that we wish to explore because
it establishes an insightful relationship between the SSC
and a Bayesian estimator of correlation between the
forecast and the predictand.
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a. Correlation between forecast and predictand

The marginal density of forecast x (predictive—in
the Bayesian sense) results from the prior density g
and the likelihood function fvia the total probability
law. It is a normal density with moments

E(x) = aM + b,
var(x) = a*S? + o>. 17

Under the assumptions of the linear model (2)-(3),
the covariance of x and w is: cov(x, w) = a var(w).
Consequently, the correlation between x and w takes
the form:

[var(cu)]”2
=a

var(x)
_ aS
- (a2S2 + 02)1/2 ’

which may be rearranged into

(18)

a’s? (19)
This expression prompts three observations. First,
the correlation estimator is Bayesian in nature, since
information from different sources may be used to es-
timate its component parameters, S and (a, o). Hence,
p need not be equal to the empirical correlation esti-
mated from a verification record alone. Second, p could
also be interpreted as a Bayesian estimator of the
anomaly correlation—that is, the correlation between
the forecasted departure (x — M) and actual departure
(w — M) from the climatological mean M = E(w);
this correlation is exactly cor[(x — M), (v — M)]
= cor(x; w) = p. Third, the first term in the bracket is
the square of the already familiar SSC. Thus, it turns
out that the Bayesian estimator of the correlation be-
tween the forecast and predictand is a function of the
standardized sufficiency characteristic. The monoto-
nicity of this function depends upon the sign of g, but
for the purpose of sufficient comparisons of forecasts,
the correlation sign is irrelevant. (This is so because a
Bayesian decision procedure would recognize the neg-
ative slope coefficient ¢ and automatically invert the
direction of the dependence between x and w in the
posterior distribution, as shown in appendix A.)

o? -1/2
p = (sign ofa)(—- + 1) .

b. The score and its interpretation

We have thus arrived at the definition of the Bayes-
ian correlation score: BCS = |p|, or more explicitly

o2 ~1/2
BCS = (0_2? + l) .

The score is bounded, 0 < BCS < 1, with BCS = | for
the perfect forecast and BCS = 0 for the forecast pro-
duced by guessing, or a random number generator.

(20)
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The score establishes a complete order between
forecasts as follows: Forecast x; of predictand w; is suf-
ficient for forecast x; of predictand w; if, and only if,

BCS; > BCS;. (21)

When predictands «; and w; are different, the inter-
pretation of the sufficiency condition (21) follows the
interpretation of condition (14) in terms of the SSC.
When predictands w; and w; are identical, so that w;
= w; = w, the interpretation of the sufficiency condition
(21) parallels the interpretation of condition (12) in
terms of the SC. In either case, the BCS is interpretable
as the correlation between the forecast and the predic-
tand. Inasmuch as the correlation is an absolute scale,
the BCS constitutes a universally comparable measure
of the forecast skill. This measure assumes that the
climatological distribution of the predictand constitutes
prior (benchmark) information, and orders alternative
forecasts consistently with the utilitarian criterion of
choice.

¢. Practical verification procedure

A practical implementation of the verification pro-
cedure entails four steps: (i) From a stationary cli-
matological record of the predictand, estimate its stan-
dard deviation S. (ii) From a record of the forecasted
and actual states, which may be historical or simulated,
estimate the parameters a and ¢ of the linear regression.
(iii) Verify that the assumptions of a normal prior dis-
tribution and a normal-linear likelihood function are
acceptable. (iv) Compute the BCS. In appendix C, we
expand upon several questions that might be raised
concerning the interpretation and special cases of this
verification procedure.

Persistence-type forecasts, often generated in order
to establish a benchmark of skill for other types of fore-
casts, may be verified via the proposed procedure as
well. In such a case, two BCSs would be reported, one
for the persistence-type forecast and the other for the
forecast of primary interest.

When the data cry out against the assumption of a
normal prior distribution, the general approach is to
eliminate the nonnormality via a suitable transfor-
mation of the predictand (Box and Tiao 1973, Chapter
10). Violations of the assumptions underlying the nor-
mal-linear likelihood function may manifest them-
selves in two ways: (i) a nonlinearity of the regression
E(x|w)—this may often be eliminated via a suitable
transformation of the forecast x; (ii) a dependence of
the conditional variance var(x|w) upon the state w—
this may be impossible to eliminate, and therein may
lie a limit on the universality of the BCS.

Transformations of the predictand w and the forecast
x need not be identical, but each must be strictly
monotone (increasing or decreasing ). The admissibility
of such transformations rests on the fact that they do
not alter the binary relation of sufficiency between
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forecasts. Hence, the verification procedure described
above may be applied to records of the transformed
variables. Transformations that guarantee the nor-
mality of the prior distribution, and that are also nec-
essary, though not sufficient, for the linearity of the
regression, are probability integral transformations.
The mechanics and effectiveness of such transforma-
tions are illustrated in appendix D.

7. Examples and discussion

a. Sufficient comparison versus mean square error

Shown in Table 1 is an exemplary comparison of
three systems (n = 1, 2, 3) producing forecasts of the
same predictand. Hence, the ordering of forecasts ac-
cording to their ex ante economic values may be es-
tablished via the SC,, whose computation does not
involve the prior variance S2. This ordering, implied
by increasing SC,, is 3, 2, 1. The example also illustrates
the impact of the prior variance S? on the Bayesian
correlation score BCS,, and the mean square error
E(e,?). Since we set M = 0 and b, = 0, E(¢,?) is equal
to the unconditional variance of the forecast error
var(e,).

The example demonstrates that neither the condi-
tional variance of the forecast error var(e,|w) = 0,2,
nor the mean square error E(¢,?), is a proper surrogate
measure for forecast value. In terms of increasing o,2,
the forecasts are ranked 1, 2, 3. In terms of increasing
E(e,2), the forecasts are ranked 1, 2, 3 when the prior
variance is $2 = 102, and 2, 3, 1 when the prior variance
is S? = 502. Not only, then, does the ranking of fore-
casts in terms of E(¢,2) depend upon the natural vari-
ability of the predictand, but it is also inconsistent with
the ordering of forecasts in terms of their economic
values.

This ordering, implied by decreasing BCS,,, is 3, 2,
1, regardless of the prior variance S2. Naturally, the
magnitude of the BCS,, depends upon S?: the score is
uniformly larger for the higher variance, reflecting the
fundamental notion that the economic value of a given
forecast is relative to the natural variability of the pre-
dictand.

The quadratic score QS,;, which in both cases implies
the same ordering of forecasts as the mean square error
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E(e,?), takes on the negative sign when the prior vari-
ance is S? = 102, As per traditional interpretation, these
forecasts would be said to have negative skill. This is
a dangerous form of conclusion: it may mislead the
recipients and harm the forecasters and users alike,
because despite the negative QS,,, each of the three
forecasts has a nonnegative economic value for every
rational user. Moreover, forecast n = 3, with the most
negative QS,;, has the highest BCS,, and, therefore, the
highest economic value.

While interpreting the Bayesian correlation score,
we should keep in mind that it is an ordinal measure
of economic value. To wit, the magnitude of the BCS
does not say whether the economic value is sizeable or
infinitesimal—this depends upon a decision problem.
Likewise, the equality BCS; = oBCS;, with a > 0, does
not imply that forecast i is « times as valuable as fore-
cast j. Ergo, it would be inappropriate to arbitrarily set
a threshold on the BCS scale in order to dichotomize
all forecasts into “skillful” and “unskillful,” or ‘“valu-
able” and “worthless.” Only by performing a full-
fledged decision analysis could one establish a corre-
spondence between the magnitude of the BCS and the
magnitude of the economic value for a particular user.
Most likely, this correspondence takes a different form
for different users. It is possible, though, that numerous
case studies performed for a variety of users could offer
guidelines by delineating a lower range of the BCS
where forecasts of a given predictand have no signifi-
cant economic value to most users.

b. Performance of seasonal runoff forecasts

Continuing the example introduced earlier, we re-
port results of an evaluation of seasonal snowmelt run-
off forecasts for the Weiser River near Weiser, Idaho.
All five forecasts are for the same predictand, the runoff
volume during April-July, but each is issued with a
different lead time: the first forecast, issued in January,
has the lead time of seven months, and each subsequent
forecast has the lead time shorter by one month. The
prior parameters M and S were estimated from a record
of 38 observations (1951-1988) of the predictand; the
likelihood parameters a, b, and o were estimated from
arecord of 18 realizations ( 1971-1988) of the forecast
and predictand.

TABLE 1. Sensitivity of the ordering of forecasts in terms of the Bayesian correlation score BCS,, the mean square error E(e,?), and the
quadratic score QS,, to the prior variance S2.

S=10 S=50
" Gn In SCa BCS, [E(eN"? Qs, BCS, [E(e))"? Qs,
1 0.30 15 50.00 0.196 16.55 -1.74 0.707 38.08 0.42
2 0.50 24 48.00 0.204 24.52 —5.01 0.721 34.66 0.52
3 0.70 33 47.14 0.208 33.14 -9.98 0.728 36.25 0.47

Since M = 0 and b, = 0, E(¢,2) = var(e,).
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TABLE 2. Evaluation of performance of seasonal runoff volume forecasts for Weiser River near Weiser, Idaho.

Regression parameters Conditional Bayesian
Forecast standard deviation Sufficiency correlation

month Slope Intercept of forecast error characteristic score

n an b, o SC, BCS,

1 0.55 41.17 17.37 31.58 0.79

2 0.68 26.27 19.60 28.82 0.81

3 0.70 27.44 14.38 20.54 0.89

4 0.79 18.60 14.39 18.22 0.91

5 0.81 15.80 12.40 15.31 0.94

Prior mean M = 99.86; prior standard deviation S = 40.40. Runoff volume is for the period April-July.

Table 2 reports estimates of all parameters as well
as the SC,and BCS, forn =1, - -+ , 5. As one would
expect, BCS, increases with 7, implying that each fore-
cast is sufficient for every forecast issued earlier. If all
forecasts were available to the users at the same epoch,
then the ordering of forecasts in terms of their economic
values would be from xs to Xx;.

¢. Trade-offs between skill and lead time

To elucidate the kinds of analyses that the BCS al-
lows, the seasonal snowmelt runoff forecasts have been
evaluated for three stations: Yellowstone River near
Billings, Montana; Boise River near Twin Springs,
Idaho; and Salt River near Roosevelt, Arizona. Inas-
much as the forecasts are for different stations and dif-
ferent runoff seasons, the predictands are not identical
random variables. Hence, the SSC or BCS are the ap-
propriate measures for comparing the skill of these
forecasts.

For each station, Table 3 lists the runoff seasons,
and Fig. 2 shows a plot of the BCS,, as a function of
the forecast month n. Several observations can be
made. (i) For every station, the forecast skill generally
improves as the lead time becomes shorter. Most of
these improvements take place between the January
and March forecast months. (ii) Trade-offs between
the skill and lead time of forecasts are distinct for each
river. Forecasts for the Boise River exhibit the highest
skill, even though they do not have the shortest lead
times. Forecasts for the Yellowstone River have the
longest lead times, yet their skill is not uniformly the
lowest. (iii) The April forecast for the Yellowstone

TABLE 3. Runoff seasons for which forecasts are prepared.

Station Forecast month Runoff season
Yellowstone 1,2,3,4 April-September
5 May-September
Boise 1,2,3,4,5 April-July
Salt 1 January-May
2 February-May
3 March-May
4 April-May

River (with the lead time of six months) has about the
same skill as the January forecast for the Boise River
(with the lead time of seven months).

8. Closure

These analyses exemplify the kinds of cross-com-
parisons of the forecast skill that are admissible. More-
over, comparisons of the BCSs are meaningful not only
in the statistical sense, as comparisons of correlations,
but also in the economic sense: a higher BCS implies
a higher economic value of forecasts, either (i) to all
rational users if one compares forecasts of the same
predictand, or (ii) to a class of rational users facing the
standardized deci$ion problem if one compares fore-
casts of different predictands. This interpretive limi-
tation notwithstanding, the BCS is a measure that en-
sures coherence, in the broadest sense allowed by the
theory of sufficient comparisons, between a statistical
verification analysis and a full-fledged economic anal-
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ysis of all uses of forecasts. For these reasons, the BCS
might be worth considering as a standard measure for
reporting the skill of categorical forecasts of continuous
predictands, from the viewpoint of utilitarian users.
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APPENDIX A
Posterior Distribution and Forecast Calibration
a. Posterior distribution

The predictive density of the forecast is

&(x) = ff(XIw)g(w)dw- (A1)

Given the models of g and f'specified in section 2, £ is
a normal density with moments
E(x)=aM + b,
var(x) = a*S? + o2, (A2)

The posterior density of the predictand w, conditional
upon the forecast x, results from Bayes’ theorem:

S(x|w)g(w)
gx)

Given the models of g and f specified in section 2,
n(+ | x) is a normal density with moments

E(w|x)= Ax+ B,

n(w|x) = (A3)

var(w| x) = 52, (A4)
where
as? Mo? — abS?
A a’S?* + 6%’ a*S*+ ¢% ’ (A3)
2 2
2 Sco (A6)

ST = .
a’S?*+ o2

Relations (A4)-(A6) reveal the manner in which
the climatological information about the predictand,
encoded in M and S, is combined with information
about the forecaster, encoded in a, b, and o. The pos-
terior mean E(w| x) is a linear function of the forecast
x, while the posterior variance var(w| x) is constant.
Thus, for any forecast x, the posterior density n( - | x)
is obtained by translating the fixed density N(0, 5?) to
the location Ax + B. The posterior variance s is never
greater than the prior variance S?, no matter the mag-
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nitude of a and ¢. Thus, the Bayesian processor (A3)
automatically guards the user against notoriously poor
forecasts.

b. Calibration of categorical forecasts

The forecaster may employ the posterior distribution
H(- | x), corresponding to the density 5(- | x), as a
calibrating filter in the following sense. Suppose a point
estimate y of w is desired that ensures a specified pos-
terior probability p of the event { w < y}. Having pro-
duced x, the forecaster can obtain the desired estimate
y as the p-probability fractile of the posterior distri-
bution, such that H(y|x) = p. In general, a categorical
forecast may be calibrated in this way to any posterior
probability, 0 < p < 1, of the event {w < y}. In par-
ticular, when p = !4, the calibrated estimate y equals
the posterior median of w which, given the normal dis-
tribution H(- | x), coincides with the posterior mean
E(w| x); hence the calibrating filter is given by a linear
expression: y = Ax + B. (It may be of interest to note
that this expression is a form of the Kalman filter, an
estimator popular among electrical engineers.)

From the viewpoint of rational users, nothing is
gained by recalibrating estimate x into estimate y,
whatever the probability p, because an optimal decision
rule itself utilizes the entire posterior distribution
H(- | x). From the viewpoint of other users, who em-
ploy suboptimal decision rules, recalibration may be
desirable, provided the forecaster knows the posterior
probability p that produces an optimal estimate y for
a given class of users. The common belief that the pos-
terior mean is a universally optimal estimator is un-
founded. For instance, y = E(w|x) is a nonoptimal
estimator for a user who makes a decision as if y were
a perfect forecast of w and whose utility is an asym-
metric function of the forecast error (y — w). These
facts explain why the lack of calibration, in the sense
of x # E(w| x), does not bear on the measures of fore-
cast skill derived from the utilitarian point of view.

APPENDIX B

Derivation of SSC

Given the original predictand-forecast pair (w, x),
modeled in terms of the prior density (1) and the like-
lihood function (2)-(4), define a transformed pair (7,
z), wherein

.._M —
v=wS and z=x—SA—l-. (B1)
Consequently, v ~ N(0, 1) and
x—M=aw+b+0-—M
S S
_ w—M (a-1)M+b 0
=a—g + S +S. (B2)
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After denoting
b,___(a;l‘;_AiLb and 0*:%’ (B3)
we obtain
z=av+b' + 0, (B4)

which establishes a relationship between the trans-
formed predictand v and its forecast z. Since §' ~ N(O,
02/S5?), the sufficiency characteristic of forecast z, re-
named into the standardized sufficiency characteristic,
takes the following form:

_[var(0)]'* _
ssc—{ = ] o5

Given a task of comparing different predictand-
forecast pairs, we transform each original pair (w,, X,)
into (»,, z,) and find SSC,, = 0,/|a,|S,, forn =i, j.
Since »; and »; have identical prior distributions, we
let v = »; = v; and compare (», z;) with (», z;). Thus,
the task has been reduced to a comparison of two fore-
casts z; and z; of predictand ». By applying Krzyszto-
fowicz’s (1987 ) theorem, we may now assert that z; is
sufficient for z; if, and only if, SSC; < SSC;. Because
the transformation between (», z,,) and (w,, Xx,) is one
to one, the following definition may be introduced:
forecast x; of predictand w; is sufficient for forecast x;
of predictand wj if, and only if, z; is sufficient for z;.

(B5)

APPENDIX C

Interpretations and Special Cases
a. The viewpoint of an observer

Two questions, probing the coherence of our Bayes-
ian approach to forecast verification, were brought to
our attention by a reviewer. The first question: Is it
valid to estimate the prior distribution from a clima-
tological record of the predictand, when the forecaster
also utilizes the climatological record in his procedure?
The answer is yes. The argumentation rests on the
premise that models for forecast verification should be
constructed from the viewpoint of a user—an outside
observer of the forecast system, not a forecaster. The
purpose of the prior distribution, then, is to describe
the uncertainty about state w, given all information the
user would have for making decisions in the absence
of forecasts. Since this information could be a clima-
tological record, it is valid to estimate the prior distri-
bution from such a record.

The second question: Should not the likelihood
function take into account some features of the fore-
casting procedure? For example, when a forecaster
himself applies the Bayesian procedure of appendix A,
and calibrates his categorical forecast to a specified
posterior probability, does the Bayesian approach to
verification remain valid? Again, this dilemma may be
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resolved by consistently maintaining the viewpoint of
a user. The purpose of the likelihood function is to
describe the statistical relationship between state w and
its forecast x as seen by a user—an outside observer of
the forecast system. This relationship is the sole char-
acterization of forecasts that the user needs to know
in order to make decisions rationally; knowing the
bowels of the forecast system is irrelevant.

b. Posterior mean as a forecast

When a categorical forecast x coincides with the
posterior mean E(w|x), with respect to a specified
prior distribution of the predictand w (which may be
the climatological distribution), the Bayesian verifi-
cation procedure automatically detects this property
of forecasts. For if x = E(w| x), then with the aid of
expressions (A4)-(A6) presented in appendix A, we
find that the likelihood parameters must satisfy the fol-
lowing equalities:

b=(1—-a)M,
o2 =a(l —a)S?, (C1)

with the condition 0 < a < 1. The first equality implies
that forecasts are unbiased in the sense of E(x) = E(w).
Furthermore, it implies that the regression line defined
in (4) takes the form:

E(x|lw)=w+ (1 — a)(M — w). (C2)

Thus, a categorical forecast coinciding with the pos-
terior mean, x = E(w| x), exhibits a conditional bias
since E(x|w) # w. Such a forecast will, on the average,
overestimate the states below the prior mean, w < M,
and underestimate the states above the prior mean, o
> M.

Upon inserting ¢ from (C1) into (20), the Bayesian
correlation score becomes

BCS = a'/2. (C3)

We have reached the simplest possible case of verifi-
cation: when x = E(w| x), just one parameter, the slope
a of the regression line between forecast x and actual
state w, summarily characterizes the forecaster. In par-
ticular, @ = 1 implies a perfect forecast, and for any
imperfect forecast, a < 1.

Last, we shall examine implications of the equality
x = E(w] x) on the forecast error: ¢ = x — w. Taking
advantage of relations (C1), we insert them into (7)
and obtain moments:

E(e) =0,
var(e) = (1 — a)$S?; (C4)

we note in passing that var(e) = var(w| x), the posterior
variance of the predictand. The mean square error,
defined in (8), now becomes

E(e?) = (1 - a)$?, (C5)
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and the quadratic score, defined in (9), takes the form

QS =a. (C6)
By comparing (C6) with (C3), we find that
BCS = (QS)!/2, (C7)

In conclusion, if a categorical forecast x of a continuous
predictand w coincides with the posterior mean of the
predictand, E(w| x), with respect to a specified prior
distribution of w, then the quadratic score becomes a
rational measure of forecast skill from the utilitarian
point of view.

APPENDIX D
Probability Integral Transformations

Let v denote the original predictand and y denote
the original forecast. The predictand-forecast pair (v,
y) is processed into a pair (w, x) through transforma-
tions that are necessary and sufficient for the normality
of the predictand w, and necessary for the linearity of
the regression E(x|w). The procedure is illustrated
with a numerical example displayed in Table DI,
wherein the original records of v and y are transformed
into records of w and x. The record of v was purposely
made longer than the record of y to mimic the case
found frequently in practice. The procedure consists
of four steps.

Step 1. Given m observations of v, arranged in in-
creasing order, v; < v, < -+ < v, the empirical
distribution R of v is constructed:
R(v)=P(v<v)=—",

i=l’...’m'
m+ 1

(D1)

The construction is detailed in Table D2 and the re-
sultant distribution is plotted in Fig. D1. With Q!
denoting the inverse of the standard normal distribu-
tion, define a variate

w = Q7'[R(V)].

Each observation v; of v can thus be transformed into
an observation w; of w, as illustrated in Table D2.

(D2)

TABLE DI. Original and transformed records of the predictand and
the forecast.

Original records Transformed records

v y w x
110 1.150

20 -0.675

10 20 —-1.150 —0.966

40 30 0.000 -0.430

70 60 0.675 0.430

30 40 -0.319 0.000

50 70 0.319 0.966
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TABLE D2. Empirical distributions and probability integral
transformations of the predictand and the forecast.

Predictand Forecast
i v; R(vy) w; i Vi T(y) Xi
1 10 0.125 —1.150 1 20 0.167 ~0.966
2 20 0.250 —0.675 2 30 0.333 ~0.430
3 30 0.375 -0.319 3 40 0.500 0.000
4 40 0.500 0.000 4 60 0.667 0.430
5 50 0.625 0.319 5 70 0.833 0.966
6 70 0.750 0.675
7 110 0.875 1.150

Whatever the distribution R of v, the distribution G of
w is normal with mean M = 0 and variance S? = 1.
The upper part of Fig. D2 shows G obtained in our
example.

Step 2. Given n observations of y, arranged in in-
creasing order, y; < y, < « - + <y, the empirical dis-
tribution T of y is constructed:

1 :
Ty)=Py<sy)=——]—, i=1,+++,n

n+1
(D3)

Define a variate
x=Q7'[T(»)].

Each observation y; of y can thus be transformed into
an observation x; of x, as illustrated in Table D2.

Step 3. The transformed record of the predictand-
forecast pair (w, x) is now used to estimate the param-
eters a, b, and o of the linear regression defined in (4).
Table D1 shows the transformed record, and the lower
part of Figure D2 depicts the sample points, the regres-
sion line, and estimates of the parameters. What re-
mains to be verified is (i) whether the linearity of the
regression E(x|w) is an acceptable assumption and (ii)
whether the conditional variance var(x|w) can be as-
sumed independent of the predictand w.

Step 4. The estimates g = 0.883, ¢ = 0.492, and S
= |1 are input into (20) that gives BCS = 0.873.

(D4)

R(v)
1.0 -
=
=
0.5}
0 IS TS ST RSN N T VY VO S S S
0 50 100 v

FIG. D1. Empirical distribution of the original predictand.
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FiG. D2. Distribution of (a) the transformed predictand and (b)
estimation of the likelihood function from the transformed records
of the predictand and forecast.
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