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ABSTRACT

The concept of sufficiency, originally introduced in the context of the comparison of statistical experiments,
has recently been shown to provide a coherent basis for comparative evaluation of forecasting systems. Specificaily,
forecasting system A is said to be sufficient for forecasting system B if B’s forecasts can be obtained from A’s
forecasts by a stochastic transformation. The sufficiency of A’s forecasts for B’s forecasts implies that the former
are of higher quality than the latter and that all users will find A’s forecasts of greater value than B’s forecasts.
However, it is not always possible to establish that system A is sufficient for system B or vice versa. This paper
examines the concept of sufficiency in the context of comparative evaluation of simple probabilistic weather
forecasting systems and investigates its interpretations and implications from perspectives provided by a recently
developed general framework for forecast verification.

1t is shown here that if system A is sufficient for system B, then the basic performance characteristics of the
two systems are related via sets of inequalities and A’s forecasts are necessarily more accurate than B’s forecasts.
Conversely, knowledge of a complete set of performance characteristics makes it possible to infer whether A is
sufficient for B, B is sufficient for A, or the two systems are insufficient for each other. In general, however,
information regarding only relative accuracy, as measured by a performance measure such as the mean square
error, will not be adequate to determine the presence or absence of sufficiency, except in situations in which
the accuracy of the system of interest exceeds some relatively high critical value. These results, illustrated by
means of numerical examples, suggest that comparative evaluation of weather forecasting systems should be
based on fundamental performance characteristics rather than on overall performance measures.

Possible extensions of these results to situations involving more general forecasting systems, as well as some
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implications of the results for verification procedures and practices in meteorology, are briefly discussed.

1. Introduction

Comparative evaluation is concerned with compar-
ing the performance of two (or more) forecasting sys-
tems or forecasters. In the context of weather fore-
casting, this comparison has traditionally been
accomplished by computing an overall measure of
performance (e.g., the mean square error or a skill
score) for each system and then comparing the nu-
merical values of these measures. It is implicitly as-
sumed in this process that the measure of performance
(a measure of accuracy or skill) completely character-
izes the quality of the forecasts and that the forecasts
judged to be of greater accuracy or skill are also of
greater value to actual and potential users.
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Recent studies related to quality/value relationships
for weather forecasts in the cost-loss ratio problem (e.g.,
Chen et al. 1987; Murphy and Ehrendorfer 1987) reveal
that overall measures of performance, by themselves,
generally do not completely determine forecast quality.
Specifically, these studies demonstrate that the rela-
tionships between performance measures and measures
of forecast value are usually described by multivalued
functions (i.e., envelopes). Such relationships are mul-
tivalued because accuracy (or skill) and value are dif-
ferent multivalued functions of basic characteristics of
performance (i.e., the relationships are inherently
multidimensional and therefore cannot be described
by single-valued functions). The existence of such
multivalued relationships implies that forecasts of
greater accuracy (or skill) can actually be less valuable
to users. Thus, the conditions under which one fore-
casting system can be judged to be unambiguously su-
perior to another forecasting system are evidently not
well defined, at least in the existing meteorological lit-
erature.

The fundamental work on the comparison of statis-
tical experiments by Blackwell (1951, 1953) provides
the basis for a coherent approach to comparative eval-
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uation. This work identified the conditions under which
one experiment could be considered to be more infor-
mative than—or sufficient for—another experiment.
In a recent series of papers, DeGroot and Fienberg
(1982, 1983, 1986) introduced the concept of suffi-
ciency into a forecasting context, and they presented
important results related to the comparative evaluation
of forecasting systems (or forecasters). Specifically, they
described the conditions under which one forecasting
system can be considered to be sufficient for another
forecasting system. The fact that system A is sufficient
for system B implies that (i) A’s forecasts are of higher
quality than B’s forecasts and (ii) A’s forecasts are of
greater value than B’s forecasts for all users. These two
implications (of sufficiency) provide a strong justifi-
cation for adopting the concept of sufficiency as the
basis for comparative evaluation of weather forecasting
systems.

The purposes of this paper are (i) to discuss the con-
cept of sufficiency and illustrate its interpretations and
implications in the context of comparative evaluation
of weather forecasting systems and (ii) to investigate
the relationships among sufficiency, forecast quality (as
determined by basic characteristics of forecasting sys-
tems), and forecast accuracy. In pursuit of these ob-
jectives, we will make extensive use of a recently de-
veloped general framework for forecast verification
(Murphy and Winkler 1987). This framework, which

is based on the joint distribution of forecasts and ob-

servations, provides three complementary perspectives
on the issues of concern here: a perspective based on
the joint distribution itself and two perspectives asso-
ciated with factorizations of the joint distribution into
conditional and marginal distributions. For simplicity,
the present paper focuses on primitive probabilistic
forecasting systems that produce forecasts for binary-
event (e.g., precipitation/no precipitation) situations.
The accuracy of these forecasting systems will be mea-
sured by the Brier score (Brier 1950), the mean square
error of the probabilistic forecasts.

A definition of sufficiency for binary-event situations
is presented in section 2. Four primitive probabilistic
weather forecasting systems are also introduced in this
section. These systems provide the basis for numerical
examples and sample calculations that appear in sub-
sequent sections of the paper. Section 3 contains both
interpretations of sufficiency within the three major
perspectives provided by the general framework for
forecast verification and numerical examples to illus-
trate the three alternative means of determining suffi-

ciency. Section 4 explores the implications of suffi- .

ciency for basic characteristics of forecast quality and
measures of accuracy. Conversely, the extent to which
characteristics of forecast quality and performance
measures provide a basis for drawing inferences re-
garding sufficiency is investigated in section 5. Section
6 consists of a discussion and conclusion, including
some remarks concerning the extension of these con-
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cepts and methods to more general weather forecasting
systems and the implications of these results for pro-
cedures and practices in forecast evaluation.

2. The concept of sufficiency
a. Definition of sufficiency

The forecasting systems considered here are assumed
to produce forecasts for a binary variable X, where X
= 1 if the event of concern (e.g., precipitation) occurs
and X = 0 otherwise. Unconditional or marginal prob-
abilities of the two events are denoted by p, = Pr(X
= 1) and py = Pr(X = 0) = | — p,. In a meteorological
context, these probabilities are the (sample) climato-
logical probabilities. Extensions of the concepts, inter-
pretations, and methods presented in this paper to sit-
uations involving more than two events will be dis-
cussed briefly in section 6.

A forecast (F) produced by such a system is assumed
here to be a member of a finite set T of k numerical
values, where T = {fi, f;, * - *, fx }. The members of
this set specify various levels of the probability of oc-
currence of the event of concern; thus, the forecasts
are probabilistic forecasts. For example, in the case of
precipitation probability forecasts, the set 7" might
contain the eleven equally spaced values 0.0(0.1)1.0.
Given the climatological probabilities, these forecasting
systems are completely characterized by the two con-
ditional probabilities p(f| 1) and p(f|0), where

p(fIN=PF=f|X=1), 8))
p(f10) =Pr(F =f|X =0) 2

[it is implicitly assumed here that p(f|1) and p(f|0)
are stationary; that is, they are assumed to be time
invariant]. These conditional probabilities are generally
referred to as likelihoods, since they indicate the like-
lihoods of the forecasts given the respective events. For
f=0.30, for example, p(0.30| 1) and p(0.30|0) are the
likelihoods of a probability forecast of 0.30 given pre-
cipitation and no precipitation, respectively.

The probability of use of the forecast F = f'is denoted
here by =;; that is, 7, = Pr(F = f), where > 0 and

2 w = 1. These unconditional or marginal probabil-
fer .

ities are generally referred to as predictive probabilities.
For example, 7 3 is the probability that a precipitation
probability forecast of 0.30 is used. Estimates of prob-
abilities such as wy, as well as p(f|x) and p,, can be
obtained from the empirical joint distribution of fore-
casts and corresponding events.

It is now possible to present a definition of the con-
cept of sufficiency for binary events:

Definition of sufficiency: Let A and B denote two
binary-event probabilistic forecasting systems. Then
system A is sufficient for system B if a stochastic trans-
formation h(fB|f*) exists such that
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2 WA = PRI

fAer
foreach fB€ T, (3)
> AR MPAA10) = pP(SR10)
fher
foreach fB€ T, (4)

where the superscripts A and B denote the respective
forecasting systems.

The function A(fB|f4) in (3) and (4) qualifies as a
stochastic transformation if 0 < A(/®|f*) < 1 and
BZ h(fB|f*) = 1 for each f2 € T. It is assumed here
rier .

that if systems A and B do not use the same set of
permissible forecast values, then 7" denotes the union
of the two sets of values.

Insight into the interpretation of the definition of
sufficiency—and its implications—can be obtained by
recognizing that the likelihoods in (1) and (2) describe
the ability of the forecasting system to discriminate
between different events (see Murphy and Winkler
1987). Thus, the existence of a stochastic transforma-
tion such as that defined in (3) and (4), tends to “av-
erage out” the discriminatory ability of the likelihoods;
therefore, system B is necessarily less discriminatory
than system A. This situation implies that forecasting
system B contains greater uncertainty than forecasting
system A concerning the likelihood of occurrence of
the events. Therefore, the most important implication
of the existence of such a stochastic transformation is
that all users will prefer system A to system B. However,
a “solution” A(fB|f*) that qualifies as a stochastic
transformation may not exist. As a result, it may not
be possible to establish that system A is sufficient for
system B, or vice versa. In such cases, the two systems
will be said here to be insufficient for each other.

As defined above, the concept of sufficiency involves
forecasts from a finite set T of k distinct values. For
simplicity, it will be assumed here that the forecasts of
concern employ only two probability values, f; and f;.
Two interpretations can be given to such primitive
probabilistic forecasts: (i) the forecasts are calibrated
versions of previously produced categorical forecasts
(in which case, f; = 1 and f; = 0) or (ii) the forecasts
are inherently probabilistic but involve the use of only
two probability values. For convenience, the labels “1”
and “0” will be used throughout this paper to represent
/i and fq, respectively. However, it should be kept in
mind that these labels do not necessarily represent cat-
egorical forecasts (i.e., probabilities of one and zero)
and that the labels “1” and “0” may have different
meanings for the two forecasting systems. Thus, the
set of permissible forecast values is now 7*, where T*
= {f* 1M AR 48

For the primitive probabilistic forecasts defined in
the previous paragraph, p(f|x) is zero except for f
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= “1” and f = “0” [i.e., only p(“1”|1), p(“1”|0),
p(“0”{1), and p(*0’|0) are nonzero]. Thus, the defi-
nition of sufficiency [see (3) and (4)] for such forecasts
reduces to the following set of equations (omitting the
quotation marks around the labels):

R(fP=11A=Dpr (A= 1D +h(fP=1]

fA=0pr (A =01 =p"(fP=1[1), (5
h(f®= 0|fA Dt (fA =110+ h(f2=0|

fA=0pt (/A =011 =p(f2=0l1), (6
k(fB‘llf" DR (A =110+ A (fP = 1]

fA=0p*(f*=010)=p* (f2=1]0), (7
h(fB=0|fA=1)pA(fA=1I0)+h(fB=0|

A =0t (f* =0]0) = p° (f° = 0]0). (8)

Moreover, (6) and (8) are redundant with respect to
(5) and (7), respectively. Therefore, using the simplified
notation pty = p* (f* = 1|1), pfy = p* (/* = 1]0),
etc., this system of equations can be reduced to the
following two linear independent equations:

h(fP=11f%=Dph +h(f®=1]

fA=00-p)=pl, )
h(fP=11f*=Dplo+h(f®=1| |
fA=0)1 = plo) = plo.  (10)

Perhaps it should be noted at this point that the
probabilities f; and f,, used by systems A and B (see
T*), do not enter into the sufficiency relationship be-
tween the two forecasting systems in any way. They
simply represent labels, and only their likelihoods are
relevant to the determination of sufficiency.

b. Hypothetical weather forecasting systems

In order to illustrate various interpretations of the
concept of sufficiency and to facilitate the discussion
of some implications of sufficiency for forecast quality
and forecast accuracy (and vice versa), we will consider
four hypothetical binary-event primitive probabilistic
weather forecasting systems in this paper. These sys-
tems are described in terms of samples of forecasts and
the corresponding observations in Tables 1-4. In each
case, the description begins with the joint frequency of
n = 10,000 forecasts and observations and includes the
joint, conditional, and marginal probabilities associated
with these frequencies (the conditional probabilities py;
and p,o will be defined in section 3) as well as the ex-
pected half Brier score (see section 4b). The role of the
reference system in these interpretations and discus-
sions of implications will be played by forecasting sys-
tem A (see Table 1). Forecasting systems B1, B2, and
B3 (Tables 2, 3, and 4, respectively) represent alter-
native forecasting systems currently under considera-
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TABLE 1. Description of reference forecasting system A.

Joint frequencies (n = 10 000):

X
1 0
F e 2400 1800
JA 1600 4200
Joint and marginal distributions (c* = p,* — a*, d* = p,* — b*):
X
i 0
F LM atr =024 ¥ =0.18 =042
Jor A =0.16 d* =0.42 o = 0.58
p; = 0.40 Do = 0.60 1.00

Conditional distributions of forecasts given observations

(8 =1—ph, pho =1 — plo):

X

1 0
F fi* P =06 =03
st phi =04 Dho = 0.7

1.0 1.0

Conditional distributions of observations given forecasts
(o = 1—p%y, plo = 1 — pho):
X
1 0

F A ot = 0.571 o = 0.429 1.000
A pfo = 0.276 pbo = 0.724 1.000

Expected half Brier Score: BS* = 0.2187

tion, and they will be compared with forecasting system
A. Examination of these tables reveals that all four
forecasting systems possess the same climatological
probabilities; that is, they are matched forecasting sys-
tems in the sense that p,* = p;® = p, = 0.4 and p,*
= po® = po = 0.6. Otherwise, these systems exhibit dif-
ferent characteristics as reflected by their joint, con-
ditional, and predictive probabilities.

3‘.' Interpretation and determination of sufficiency
a. LBR, CR, and JD interpretations

In this section we present three interpretations of
the concept of sufficiency. These interpretations, which
are tailored to the binary-event primitive probabilistic
forecasting systems introduced in section 2a, are based
on perspectives provided by a general framework for
forecast verification (Murphy and Winkler 1987). In
effect, this framework reveals that all of the (non-time-
dependent) information relevant to forecast verification
is contained in the joint distribution (JD) of forecasts
and observations or, alternatively, in the calibration-
refinement (CR) or likelihood-base rate (LBR) factor-
izations of the joint distribution into conditional and
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marginal distributions. The CR factorization involves
the conditional distributions of observations given
forecasts and the marginal distribution of the forecasts,
whereas the LBR factorization involves the conditional
distributions of forecasts given observations and the
marginal distribution of the observations. Although it
is necessary to utilize only a single interpretation in
order to investigate sufficiency, we believe that it is
both instructive and useful to consider all three inter-
pretations in this introduction to—and expository
treatment of—the sufficiency concept and its appli-
cation.

The concept of sufficiency, as defined in section 2a,
involves the likelihoods of forecasting systems A and
B. Specifically, this concept is described in terms of
P, P, Phy, and pB. Thus, it is immediately possible,
based on (9) and (10), to interpret the concept of suf-
ficiency in terms of the LBR factorization as follows:

LBR interpretation of sufficiency. Consider two bi-
nary-event forecasting systems, A and B say, each of
which produces primitive probabilistic forecasts. Then
system A is sufficient for system B if a stochastic trans-
formation characterized by u and v exists such that

TABLE 2. Description of forecasting system B1.

Joint frequencies (n = 10 000):

X
1 0
F [ 1667 1667
R 2333 4333
Joint and marginal distributions (c® = p; — a®, d® = p, — bP'):
X
1 0
F B @' = 0.1667 BB = 0.1667 w2 =0.3333
BB P1=02333 4P =04333  m® = 0.6667
p1 = 0.4000 po = 0.6000 1.000

Conditional distributions of forecasts given observations
(o8 =1-p}, P8 =1-pR):

X
1 0
F £ ph = 0.4167 pis =0.2778
Al Pl = 0.5833 P& = 0.7222
1.0000 1.0000

Conditional distributions of observations given forecasts
b =1—p}, o8 =1 — pR):

Expected half Brier score: BS®! = 0.2350
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TABLE 3. Description of forecasting system B2.

Joint frequencies (n = 10 000):

X
1 0
F fi= 250 2250
B 3750 3750
Joint and marginal distributions (¢®* = p, — a®, d® = p, — b®%):
X
1 0
F B2 a® = 0.0250 B2 = 0.2250 B2 = 0.2500
B2 A2 =0.3750 d® = 0.3750 w22 = 0.7500
p; = 0.4000 po = 0.6000 1.0000

Conditional distributions of forecasts given observations

(0% = 1~ 7%, = 1~ P
X
1 0
F B2 P = 0.0625 =0.3750
for2 pet = 0.9375 = 0.6250
1.0000 1.0000
Conditional distributions of observations given forecasts
W8 =1—p%, o8 =1 — o)
X
1 0
o =01 o = 0.9 10
F B2 5 =0.5 o2 = 0.5 1.0
Expected half Brier Score: BS®2 = 0.2100
uply + v(1 — pty) = P, (1
upfy + v(1 — pio) = plo, (12)

where u =

f4=0).

In view of the fact that the LBR factorization involves
the likelihoods and the climatological probabilities (i.e.,
base rates), it is interesting to note that the LBR inter-
pretation of sufficiency does not depend explicitly on
the climatological probabilities associated with the two
forecasting systems.

For the primitive probabilistic forecasts of concern
here, the relationships among the joint, conditional,
and marginal probabilities can be expressed as follows
(as elementary consequences of Bayes’ theorem):

h(fB=1|fA=1)andv=~h (B =1

Pr(F=1,X=1) = pub = pumi, 13)
Pr(F=1,X=0) = pyopo = (1 — p1)mi, (a4
Pr(F =0, X = 1) = (1 = p1)p1 = piomo, (15)
Pr(F=0,X=0)= (1 — pio)po = (1 — pio)mo, (16)
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where
pn =Pr(X = 1|F = 1), (17)
pio = Pl'(/Y—'= llF = 0) (18)

Note that (13) and (15), when added together, y1e1d T
= (p1 — P10}/ (P11 — P10)-

The relationships among the conditional and pre-
dictive probabilities in (13)-(16), when considered in
conjunction with the LBR interpretation of sufficiency
[see (11) and (12)], can be used to derive the following
CR interpretation of sufficiency:

CR interpretation of sufficiency. For binary-event
forecasting systems A and B, both of which produce
primitive probabilistic forecasts, system A is sufficient
for system B if a stochastic transformation character-
ized by u and v exists such that

uphm M + vpforo®/pi® = pYim®/p®,  (19)
u(l — pt)m*/pe™ + v(1 — plo)mo™/po™
=(1 = p})7 ®/ps®.  (20)

Moreover, if systems A and B are matched forecasting
systems, then (19) and (20) become

TABLE 4. Description of forecasting system B3.

Joint frequencies (n = 10 000):

X
1 0
F i/t 3429 857
1 571 5143
Joint and marginal distributions (¢® = p, — a®, d® = p, — b®:
X
1 0
F SiB B3 = (.3429 3 = 0.0857 2 = 0.4286
o2 & =0.0571 dB8 =0.5143 7B = 0.5714
p; = 0.4000 Do = 0.6000
Condmonal distributions of forecasts given observations
=1 - PRl = 1 - )
X
1 0
F i3 P =0.8571 iy =0.1429
‘ B3 pe; = 0.1429 Pe = 0.8571
1.0000 1.0000
Conditional distributions of observations given forecasts
(o8] = 1— o1, old = 1 - PR):
X
1 0
Vi p% =08 o =02 10
F w ol = 0.1 o = 09 10

Expected half Brier Score: BS®® = 0.1200
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@n
(22)

uphm ™ + vplomo™ = phimi®,
u(l — pfm® + o(1 = pfo)me™ = (1 — pP)m,B,
respectively.

It is interesting to note that the sum of (21) and (22)
yields

um® + vmy® = 7,8 (23)

[see Eq. (2.8) of Theorem 2 in DeGroot and Fienberg
1986], which represents a randomization of A’s pre-
dictive probabilities to obtain B’s predictive probabil-
ities. This relationship is consistent with the notion
that B’s forecasts are more uncertain than A’s forecasts.
The relationships in (13)-(16), when considered in
conjunction with the LBR interpretation of sufficiency
[(11) and (12)], can also be used to obtain a JD inter-
pretation of sufficiency. For convenience, let a =
Pr(F=1,X=1)and b = Pr(F = 1, X = 0). Then, this
interpretation can be expressed as follows:

JD interpretation of sufficiency. For binary-event
forecasting systems A and B, both of which produce
primitive probabilistic forecasts, system A is sufficient
for system B if a stochastic transformation character-
ized by u and v exists such that

ua/p® + o(p® - a™/p* = a®p®  (24)
ub®/po® + v(po™ — b™/p* = B°/pe®.  (25)

Moreover, if systems A and B are matched forecasting
systems, then (24) and (25) become

(26)
27)

ua® + v(p, — a®) = ab,
ub® + v(po — b*) = b°,

respectively [see Eq. (2.9) of Theorem 2 in DeGroot
and Fienberg 1986].

The three sets of equations (11) and (12), (21) and
(22), and (26) and (27) define the conditions under
which system A is sufficient for system B according to
the LBR, CR, and JD interpretations, respectively (in
the case of matched forecasting systems). These con-
ditions are expressed in terms of the quantities z and
v, and sufficiency is assured f 0 < u < land 0 < v
< 1. The pair of equations associated with any of the
three interpretations can be used to determine the suf-
ficiency (or insufficiency) of one forecasting system for
another forecasting system.

Another possible interpretation that can be given to
the conditions under which system A is sufficient for
system B is provided by Theorem 2 in DeGroot and
Fienberg (1986). In our notation this theorem states
that, for binary-event matched forecasting systems A
and B both of which produce primitive probabilistic
forecasts, system A is sufficient for system B if and only
if a stochastic transformation characterized by u and
v exists such that (23) and (26) hold.
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b. Determination of sufficiency: some examples

We will use the equations associated with the various
interpretations of sufficiency to compare forecasting
systems B1, B2, and B3 with the reference forecasting
system A (see Tables 1-4). As noted in section 2b, these
four systems are assumed to be matched forecasting
systems, in the sense that they possess the same cli-
matological probabilities (p, = 0.4 and p, = 0.6 in each
case). This assumption is equivalent to assuming that
each system has prepared forecasts for the same set of
forecasting situations.

Consider the problem of investigating the sufficiency
of system A for system B1, making use of the equations
associated with the LBR interpretation [see (11) and
(12)]. Using the appropriate numerical values for these
systems (see Tables 1 and 2), we obtain the following
equations:

0.6u® + 0.40®' = 0.4167, (28)
0.3uB! 4+ 0.7v®! = 0.2778. (29)

Solving these equations for u®' and v®! yields u®!
= 0.6019 and v®!' = 0.1389. Since 0 < u®' < 1 and
0 < 1! < 1, the conditions for a stochastic transfor-
mation are satisfied and it is evident that system A is
sufficient for system B, Using these same equations
[or, alternatively, Eqgs. (21) and (22) or Egs. (26) and
(27)] to investigate, in turn, the sufficiency of system
A for systems B2 and B3, we obtain the following
results: #® = —0.3542 and v® = 0.6875 and u®
= 1.8095 and v®* = —0.5714. Since one or both of
these values lie outside of the unit interval in each case,
no stochastic transformation exists and system A is not
sufficient for either system B2 or system B3.

Although system A is not sufficient for systems B2
or B3, it is still possible for one or both of these latter
systems to be sufficient for system A. To investigate
these possibilities; it is necessary simply to interchange
the labels A and B (actually, B2 or B3) on the terms
in equations such as (11) and (12). In the case of B2,
we would obtain the following equations:

0.0625432 + 0.9375082 = 0.6, (30)
0.3750u%2 + 0.6250052 = 0.3. (31)

Solving these equations yields #®2 = —0.30 and v®
= 0.66, indicating that B2 is not sufficient for A. Since
B2 is not sufficient for A and A is not sufficient for B2,

. systems A and B2 are insufficient for each other. Using

the analogous equations for system B3, we obtain the
solution #® = 0.66 and v®3 = 0.24. Since both values
lie in the unit interval, it is evident that system B3 is
sufficient for system A.

Thus, it is possible to use the equations defining the
respective interpretations of sufficiency to determine
whether one forecasting system is sufficient (or insuf-
ficient) for another forecasting system. To implement
this procedure, it is necessary simply to be able to de-
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scribe the respective forecasting systems in terms of
their basic performance characteristics (i.¢., py; and pyo
in the LBR interpretation, p,; and p,o in the CR in-
terpretation, and a and b in the JD interpretation; see
section 4). Further discussion of the procedures and
conditions for determining sufficiency (or insufficiency)
between two forecasting systems will be described in
sections 4 and 5, in conjunction with the examination
of the implications of sufficiency for forecast quality
and forecast accuracy (and vice versa).

4, Implications of sufficiency for quality, accuracy, and
value

Prior to the consideration of the issues of primary
concern in this section, it is necessary to define some
terminology. First, the term performance measure will
be used here to describe verification measures that pro-
vide some—but generally incomplete—information
about the performance of a forecasting system. An ex-
ample of such a measure, in the context of probability
forecasting, is the Brier score. As noted in section 1, it
is the mean square error of probabilistic forecasts and,
as such, is a measure of forecast accuracy. Second, the
term performance characteristics will be used to de-
scribe basic components of forecast quality. Given a
complete set of performance characteristics, it is pos-
sible to recover the entire relationship (i.e., joint dis-
tribution) between forecasts and observations. For ex-
ample, from the perspective of the LBR factorization
of the joint distribution, p;; and p,, represent a com-
plete set of performance characteristics (assuming that
p1 1s known). In general, performance measures are
relatively complex, nonlinear functions of one or more
performance characteristics (e.g., Chen et al. 1987).

Introduction of the concept of sufficiency and dis-
cussion of some of its interpretations in sections 2 and
3 raises the following question that will be addressed
here: Given that forecasting system A is sufficient for
forecasting system B, what are the implications of this
condition for relationships between the respective (i)
performance characteristics and (ii) performance mea-
sures associated with the two systems? For convenience,
it will be assumed that the forecasts of interest are
primitive probabilistic forecasts (as introduced in sec-
tion 2a) and that the (sample) climatological probability
(p1) is the same for both systems and is known.

a. Implications for forecast quality (performance char-
acteristics)

In the LBR framework, the condition that system A
is sufficient for system B implies that the solution for
# and v in (11) and (12) lies between zero and one
(since a stochastic transformation exists). As a result,
the following four inequalities on the performance
characteristics p%; and p%, are obtained which must be
satisfied simultaneously for A to be sufficient for B:
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LRo(A) < pPi /Pl < LR(A), (32)
LRo(A) < (1 — pR)/(1 — plo) <LR((A), (33)

where LRo(A) = (1 — piy)/(1 — pfo) and LR(A)
= pi\ /pts are the likelihood ratios of system A. In de-
riving (32) and (33) it has been assumed that LR,(A)
> 1, otherwise the inequalities must be reversed. From
these restrictions on the likelihood ratios of system B,
it is possible to identify those forecasting systems for
which a specified reference system A is sufficient, and
this procedure is illustrated by considering the hypo-
thetical forecasting systems introduced in section 2b.

The four inequalities in (32) and (33) define a convex
region in (p,o, p11)-parameter space. This region, de-
noted by S, is depicted in Fig. 1, in which p¥, is plotted
against p%, for the situation in which system A, char-
acterized by LRy(A) = 4/7 and LR(A) = 2 (see Table
1), is chosen as the reference system. The region S de-
fines the set of all forecasting systems B for which sys-
tem A is sufficient in this example [i.e., those systems
B satisfying the inequalities in (32) and (33)].

Points representing forecasting systems A, Bl, B2,
and B3 are also depicted in Fig. 1. As expected, since
system A is sufficient for system B1 (illustrated in sec-
tion 3b), the point corresponding to system B1 falls in
region S. The other regions and curves in this diagram
will be discussed below (see section 5). :

The boundaries of .S are two pairs of parallel lines
that are obtained from (32) and (33) when p¥, is ex-
pressed as a (linear) function of p¥, and the inequalities
are replaced by equalities. Consideration of the re-
spective nonparallel lines—for example,

ph =LRy(A)ply and pii =1+ LRo(A)pho — 1)
(34)

in the case of the right inequality in (32) and the left
inequality in (33)—yields the two points of intersection
in Fig. 1 with the coordinates (pf, pt1) = (plo, P1)
= (0.3, 0.6) and (plo, p1) = (1 — pio, 1 — py) = (0.7,
0.4), respectively. The former is, of course, the point
A (m Fig. 1) defining the reference forecasting system
A in (pio, P11)-parameter space.

These two points, which depend only on the per-
formance characteristics of system A, completely de-
termine the geometry of sufficiency in this framework.
Thus, knowledge of the performance characteristics of
the reference system can be used to define immediately
the region S (as well as the other regions I and S").

In the CR framework, with the performance char-
acteristics p;; and pjo, the condition that system A is
sufficient for system B leads to the following inequalities
on the performance characteristics of system B:
< pfh (35)

plo<pho<pi<ph <

or

plo < pn<p1<p10 < pfh (36)
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[see (21) and (22)]. It has been assumed here that pf
> pi, which implies that pf, > pf, (since p; = =1pn
+ mop10; See below); otherwise, the inequalities in (35)
and (36) must be reversed. Equation (35) corresponds
to Lemma 2.1 in Krzysztofowicz and Long (1987),
which states that if A is sufficient for B then (35) holds.
The fact that (36) also holds means that, when system
A is sufficient for system B the former is also sufficient
for any system B with p% > p, > o} (i.e., systems for
which the event of concern is more likely to occur when
F = 0 than when F = 1).

In this framework, the performance characteristics
of reference system A define the geometry of sufficiency
in (p11, p1o)-Space, by means of the inequalities in (35)
and (36). Specifically, they define the rectangular region
S containing the points corresponding to the systems
for which A is sufficient.

For the hypothetical forecasting systems introduced
in section 2, the region S (and also 7 and S"; see section
5) and the points corresponding to systems A, B1, B2,
and B3 are depicted in Fig. 2. Since A is sufficient for
B1, the point Bl falls in region S (see also Tables 1
and 2). Combinations of values of p;; and po associated
with the lower-left and upper-right corners of this dia-

gram do not represent feasible forecasting systems be-
cause these combinations of values violate the equation
D = mp1y + wop10, Which is a consequence of Bayes’
theorem [see (13) and (15)].

When two forecasting systems are compared within
the JD framework, as described by (26) and (27), the
joint probabilities @ and b represent convenient per-
formance characteristics. In this framework, the con-
dition that system A is sufficient for system B implies
that the following four inequalities must be satisfied
simultaneously by B’s performance characteristics a®
and bB:

PR,(A) < bB/a® < PRy(A), (37)
PR,(A) < (po — BB)/(p1 — a®) < PRy(A), (38)

where PR,(A) = b*/a® and PRy(A) = (po-— bM/(p:
— a*) are the joint probability ratios characterizing sys-
tem A. In developing these inequalities it was assumed
that PR(A) < po/p: (which is equivalent to assuming
that p?, > p.); otherwise the inequalities in (37) and
(38) must be reversed.
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with the joint distribution of forecasts and observations.

Thus, in the JD framework, (37) and (38) define
those systems B for which a given reference system A
is sufficient. Specifically, all systems for which A is suf-
ficient are found in a convex region S bounded by two
pairs of parallel lines; these lines are obtained from
(37) and (38) when &P is expressed as a function of a®
with the inequalities being replaced by equalities. The
points of intersection of the nonparallel lines have the
coordinates (a®, b%) = (p, — a®, po — b*) and (a®, bB)
= (a*, b*) and are found in a manner analogous to
that discussed in connection with the LBR framework.
Therefore, the performance characteristics of the ref-
erence system A, in association with the climatological
probability p,, once again completely determine the
geometry of sufficiency in (a, b)-space, as in the cases
of the LBR and CR frameworks.

The shape of the region S in the JD framework is
depicted in Fig. 3 (b® plotted against a®), once again
using system A, with PR (A) = 3/4 and PRy(A) = 21/
8 (see Table 1) as the reference system. The points A,
B1, B2, and B3 represent the corresponding forecasting
systems in (a, b)-space; the points of intersection have
the coordinates (a®, bP) = (0.16, 0.42) and (a®, b®)
= (0.24, 0.18). Consistent with the results for this ex-
ample in the LBR and CR frameworks, system B1 falls
in the parallelogram S, indicating that A is sufficient
for B1.
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b. Implications for forecast quality (performance
measures)

What are the implications of the condition “system
A is sufficient for system B” for performance measures
such as the Brier score? DeGroot and Fienberg (1986)
showed that the expected Brier score can be decom-
posed into two terms, one of which measures the cal-
ibration of the forecasts and the other of which mea-
sures the refinement of the forecasts. For well-calibrated
probabilistic forecasts, the first term in this decom-
position vanishes. In the context of this paper, the as-
sumption of well-calibrated forecasts implies that f;
=Pr(X=1|F =f)and fy = Pr(X = 1|F = f;). That
is, the relative frequencies with which X = 1 when the
respective forecasts are used are equal to these forecast
probabilities. In this regard, it can be seen from (17)
and (18) that, under the assumption of well-calibrated
forecasts, f; = pi; and fy = pjo; that is, the forecast
probabilities are equal to the conditional probabilities
of event-occurrence/nonoccurrence given the respec-
tive forecasts. We adopt the assumption of well-cali-
brated forecasts here, but it should be noted that this
assumption is used only when exploring the relation-
ship between sufficiency and Brier scores.

In the case of well-calibrated primitive probabilistic
forecasts, the expected- half Brier score can be written
as follows:

BS = m[p(1 — 1011)2 + (1= pulen — 0)2]

+ (1 = m)lpio(l = p10)* + (1 — proXpro — 01  (39)

(see also Murphy 1986). This measure of performance
has a negative orientation, ranges from zero for perfect
forecasts (p;; = 1, p1o = 0) to py(1 — p,) for climato-
logical forecasts (p,; = p1o = p1), and provides a com-
plete ordering on the class of well-calibrated forecasting
systems. Since the Brier score is a strictly proper scoring
rule (Winkler and Murphy 1968), it can be shown
(Theorems 9 and 4 in DeGroot and Fienberg 1986)
that if forecasting system A is sufficient for forecasting
system B then BS* < BSB, with strict inequality holding
unless the two systems are identical. Thus, since system
A is sufficient for system B1 in the example considered
here, it follows that BS* = 0.2187 < BS®' = 0.2350.
Since the converse of this theorem does not hold, con-
ditions regarding sufficiency between two forecasting
systems generally cannot be determined solely from
their respective Brier scores. The implications for suf-
ficiency of relationships between performance mea-
sures—and performance characteristics—of two fore-
casting systems will be investigated in section 5.

¢. Implications for forecast value

As noted initially in section 1, an important feature
of the sufficiency concept for comparative forecast ver-
ification is that if system A is sufficient for system B
then the forecasts produced by system A are of greater
economic value than the forecasts produced by system
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B for all users (i.e., regardless of the user’s payoff struc-
ture). This property will be illustrated here in the con-
text of the basic cost-loss ratio situation. For a recent
description and discussion of this decision-making
“model,” see Murphy and Ehrendorfer (1987).

The expected value (per unit loss) of an imperfect
weather forecast, VF, in this context can be defined as
the difference in expected expenses between the situ-
ation involving only climatological information and
the situation involving imperfect forecasts. Then VF
can be calculated from

VF = min(C/L, p\) — = min(C/L, p1)
— mo min(C/L, pyo), (40)

where C/L(0 < C/L < 1)is the so-called cost-loss ratio
(Murphy and Ehrendorfer 1987, p. 250). [In this model,
C'is the cost of taking protective action against adverse
weather (i.e., the event occurrence) and L is the loss
that is incurred if adverse weather occurs and protective
action is not taken.] Note that VF in (40) depends only
on the performance characteristics of the forecasting
system and the cost-~loss ratio C/L which characterizes
the payoff structure of the user of the forecasts (assum-
ing that p, is given).

The fact that a system A is sufficient for another
system B implies that VF” > VF® for all C/L. That is,
sufficiency implies that this ordinal value-relationship
holds for all users, regardless of their respective payoff
structures. Moreover, this same relationship holds
when more complex models are required to describe
the users’ decision-making problems.

To illustrate this result, VF was calculated for dif-
ferent values of C/L using (40), for the four fore-
casting systems introduced in section 2b. For example,

' VFA(C/L = 0.48) = min(0.48, 0.4) — 0.42 min(0.48,

0.571) — 0.58 min(0.48, 0.276) = 0.4 —0.42%0.48
—0.58%0.276 = 0.03832. Figure 4 summarizes the re-
sults of these computations. The following relationships
are immediately clear: (i) VF®? > VFA, since B3 is suf-
ficient for A (see section 3b); (ii) VFB? also exceeds
VF®!' and VF®, since the former is also sufficient for
the latter two systems; (iii) VF®?* = VFB!, since B2 is
sufficient for B1; (iv) VF* > VFP!, since A is sufficient
for B1; and (v) no ordinal relationship exists between
VF* and VF®2, since these two systems are insufficient
for each other.

These illustrations, using the familiar cost-loss ratio
situation as a basis for assessing the value of forecasting
systems, provide tangible evidence of the claims made
for the sufficiency concept. Namely, a forecasting sys-
tem that is sufficient for another forecasting system
will be preferred to this latter system by all users because
of its greater expected economic value.

5. Implications of quality and accuracy for sufficiency
a. Implications of forecast quality (performance char-

acteristics)

The problem addressed in this section is to decide,
on the basis of a complete set of performance charac-
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teristics for two forecasting systems, whether one sys-
tem is sufficient for the other system or whether they
are insufficient for each other. In other words, we want
to determine the implications for the sufficiency rela-
tionship between two forecasting systems that can be
inferred from knowledge of their relative quality (as
measured by performance characteristics).

This question of sufficiency can be investigated
within any of the three basic perspectives (i.e., LBR,
CR, or JD) provided by the general framework for ver-
ification. For the binary-event primitive probabilistic
forecasts considered in this paper, the sufficiency
“problem” can be conveniently described in a two-
dimensional diagram with coordinate axes corre-
sponding to the performance characteristics of the
chosen perspective. Since the specific values of the per-
formance characteristics of a reference system deter-
mine completely the “geometry” within this two-di-
mensional space, it is conceptually reasonable to ar-
bitrarily define one system as the reference system. The
geometry implied by this reference system provides a
means of determining the presence or absence of suf-
ficiency with regard to the second system.

N
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To examine the sufficiency relationship with respect
to the systems A, B1, B2, and B3 (see section 2b) from
the perspective of the LBR framework, we will again
consider system A as the reference system. Its perfor-
mance characteristics—p?; = 0.6 and pfy = 0.3—com-
pletely determine the regions identified in the two-di-
mensional space (see Fig. 1). The sufficiency relation-
ship between system A and each of the B-systems can
now be addressed directly by identifying the point in
this space associated with the forecasting system B of
interest. The situation can be summarized as follows:
(i) if system B falls in region S, then system A is suf-
ficient for system B (see section 4a); (ii) if system B
falls in one of the four regions denoted by I, then sys-
tems A and B are insufficient for each other (A is not
sufficient for B and B is not sufficient for A); and (iii)
if system B falls in one of two regions denoted by 5,
then system B is sufficient for system A. The locations
of the points in Fig. 1 corresponding to the alternative
systems B1, B2, and B3 reveal that the presence or
absence of sufficiency with regard to the reference sys-
tem A, as described by this geometry, is in agreement
with the analytical results presented in section 3. In
summary, then, knowledge of the complete set of per-
formance characteristics of two forecasting systems
(e.g., p1; and pjo in the LBR framework) makes it pos-
sible to determine whether one forecasting system is
sufficient or insufficient with respect to the other fore-
casting system, by reference to a simple geometrical
framework.

Analogous results are obtained in the CR and JD
frameworks (see Figs. 2 and 3, respectively). The des-
ignations associated with the regions (S, 7, and S’) in
these frameworks have the same interpretations as in
the case of the LBR framework. Regions in Fig. 2 with-
out designations have been discussed in section 4a.

The geometry in the CR framework reveals an in-
teresting result, summarized here in terms of the fol-
lowing lemma: Lemma I: Let A and B represent two
matched binary-event primitive probabilistic forecast-
ing systems. Then system A is sufficient for system B
if and only if either (35) or (36) holds (assuming without
loss of generality that p?, > p’b). A proof of this lemma,
which strengthens Lemma 2.1 reported by Krzyszto-
fowicz and Long (1987) into an “if and only if > state-
ment, is given in appendix A. Lemma 1 is quite useful
because, given information on the relative magnitudes
of a complete set of performance characteristics in the
CR framework, it is possible to state immediately
whether system A is sufficient for system B, system B
is sufficient for system A, or the two systems are in-
sufficient for each other. .

For example, application of Lemma 1 shows im-
mediately that system, B2 is sufficient for system B1,
since p}7 = 0.1 < pB =035 <p, = 0.4 < pB = 0.5
< p}§ = 0.5. This result can also be verified using (21)
and (22), with solution # = 0 and v = 4/9. [In this case,
the assumption under which (35) and (36) are stated
must be reversed; that is, p57 < pf3.]
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b. Implications of forecast accuracy (performance
measures)

What can be inferred about the sufficiency relation-
ship between two systems when only the numerical
values of a performance measure such as the Brier score
are known? In general, the following statement can be
made: If BSE < BSA, then system A cannot be sufficient
for system B. That is, system A cannot be sufficient
for system B if B has a “better” score than A. This
result follows from Theorems 9 and 4 of DeGroot and
Fienberg (1986). However, it is not possible to deter-
mine, solely from an ordinal relationship between the
respective Brier scores, whether system B is sufficient
for system A or whether the two systems are insufficient
for each other. In this regard, note that BS* = 0.2187
< BSB! = 0.235 and, in this case, system A is sufficient
for system B. However, BS®? = 0.21 < BS* = 0.2187
and, as shown in section 3, systems A and B2 are in-
sufficient for each other. :

Notwithstanding the statements made in the pre-
vious paragraph, it is possible to infer sufficiency from
performance measures such as the Brier score when

these scores satisfy certain additional conditions. In

this regard, isopleths of expected half Brier score for
well-calibrated forecasting systems have been included
in Figs. 1-3. [Note: Knowledge of a complete set of
performance characteristics in each framework makes
it possible to specify BS; see (39).] Most isopleths of
BS pass through both regions in which system B is
sufficient for system A (i.e., S’) and regions in which
the two systems are insufficient for each other (/). For
forecasting systems that yield such scores, it is not pos-
sible to determine, simply from the scores themselves,
whether system B is sufficient for system A or whether
A and B are insufficient for each other.

However, it can also be seen from these figures that
some isopleths of BS are contained entirely within the
region in which system B is sufficient for system A
(regions denoted by S’). Let BS* denote a critical Brier
score, such that it is the largest value of BS for which
the corresponding isopleth lies entirely in region S
note that BS is a function of system A. Then the
following lemma, for which a proof is provided in ap-
pendix B, can be stated: Lemma 2: Let A and B rep-
resent two matched binary-event primitive probabilistic
forecasting systems. Without loss of generality, assume
that pf, > p%. Then if BS® < BSA [see (41)], system
B is sufficient for system A.

The critical value BS.* can be determined by intro-
ducing the two critical forecasting systems C1 and C2
defined by the following characteristics in the CR
framework: pf! = 1, pfd = pfo and p§? = pfy, o5 = 0.
Then BS is determined by the following expression:

BS* = min(BS', BS®?) = min[popfy, pi(1 — pf)}-
41

Note that this critical Brier score necessarily depends
on both performance characteristics of system A. For
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the reference forecasting system A associated with the
example in this paper, BS/* = min(0.1655, 0.1716)
= 0.1655. Since BSB3 = 0.1200 < 0.1655, it is imme-
diately evident that system B3 is sufficient for system
A. If, however, an alternative system A’ with pf = 0.9
and pfy = pfy = 0.276 were considered (note that system
A’ is constructed by “shifting A to the right”), then
only systems with Brier scores less than BSA’
= min(0.1655, 0.04) would be sufficient for A’. Ob-
viously, B3 does not satisfy this condition.

The criterion set forth in Lemma 2 partitions the
region S’ (containing all of the forecasting systems B
that are sufficient for A) into a region containing those
systems that satisfy (41) and another region containing
the remaining systems (which are still sufficient for sys-
tem A). For the latter systems it is not possible to de-
termine from the scores alone whether or not system
B is sufficient for system A. This situation illustrates a
serious deficiency in the practice of comparing fore-
casting systems on the basis of one-dimensional per-
formance measures.

6. Discussion and conclusion

The present paper has investigated the concept of
sufficiency and its implications for comparative eval-
uation of binary-event primitive probabilistic weather
forecasting systems from three different but equivalent
perspectives. Sufficiency is an important concept in this
context because it provides an unambiguous—al-
though partial—preference order on alternative fore-
casting systems. Specifically, if a reference forecasting
system A is sufficient for an alternative forecasting sys-
tem B, then all users of such forecasts will prefer the
former to the latter.

As is evident from sections 4 and 5, comparison of
such forecasting systems with reference to sufficiency
is greatly facilitated by two-dimensional geometrical
displays in which the systems are described in terms
of a complete set of performance characteristics. Three
types of convex regions constitute this two-dimensional
space: (i) regions in which system A is sufficient for
system B; (ii) regions in which system B is sufficient
for system A; and (iii) regions in which the two systems
are insufficient for each other. This geometry of suffi-
ciency is completely determined by the performance
characteristics of the forecasting system arbitrarily
chosen as the reference system. Thus, sufficiency im-
plies certain ordinal relationships on performance
characteristics (quality) and knowledge of complete sets
of performance characteristics of forecasting systems
provides a basis for determining the presence or absence
of sufficiency. The perspective provided by the cali- -
bration-refinement framework seems particularly use-
ful here, since sufficiency can be determined imme-

- diately from an ordering of the numerical values of the

respective (calibration-refinement) performance char-
acteristics (see Lemma 1).

With regard to performance measures such as the
Brier score (a strictly proper measure of accuracy), the
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fact that system A is sufficient for system B implies
that A’s forecasts will achieve a better expected score
" than B’s forecasts, under the assumption of well-cali-
brated forecasting systems. Conversely, however, if only
the Brier scores of two forecasting systems are known,
then only weak statements can generally be made vis-
a-vis sufficiency. However, a result was reported ac-
cording to which it is possible to infer the sufficiency
of system B for system A when the accuracy of the
former exceeds some critical value that depends on
the performance characteristics of the latter (see
Lemma 2).

With regard to extensions of this work, it should be
noted that the forecasting systems considered here were
restricted to binary-event primitive probabilistic fore-
casts. It would obviously be desirable to extend these
results to situations involving (unrestricted) probabi-
listic forecasting systems—both well calibrated and not
well calibrated. In this regard, if certain modeling as-
sumptions are made regarding the likelihood functions,
then it is possible to specify simple criteria under which
one probabilistic forecasting system is sufficient for an-
other system of this type (Krzysztofowicz and Long
1987). Nevertheless, this topic warrants further study
under more general conditions, and the implications
of sufficiency for performance characteristics of alter-
native systems also should be investigated. It seems
desirable as well to explore the extension of these results
to situations involving multiple events (as opposed to
binary events), a topic that has also been addressed by
DeGroot and Fienberg (1986).

The principal practical implications of this work re-
late to the fact that overall performance measures such
as the Brier score do not completely describe forecast
quality even for the very simple and restricted types of
forecasts considered here. As a result, these measures
cannot, in general, be used to determine sufficiency.
Forecast quality must be described in terms of a com-
plete set of performance characteristics to provide a
basis for establishing a preference order (if it exists)
between two or more forecasting systems using the
concept of sufficiency. This fact implies that the prac-
tice of forecast verification should focus on the use of
complete sets of performance characteristics in the
context of comparative evaluation, a point recently
emphasized as well by Chen et al. (1987) and Murphy
and Ehrendorfer (1987).

Finally, according to Lemma 2 set forth in section
5b, it is possible to infer sufficiency from Brier scores
alone when the accuracy of the alternative forecasts
exceeds some relatively high threshold value. However,
if users (or others) base their decisions regarding the
choice of forecasting systems on such a criterion, then
they might well reject alternative forecasting systems
that are in fact sufficient for the reference system. To
avoid such undesirable situations, it is necessary to
compare forecasting systems in terms of their basic
performance characteristics.
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APPENDIX A
Proof of Lemma 1

Lemma 1. Let A and B be two matched binary-event
primitive probabilistic forecasting systems. Without
loss of generality, assume that pf; > pf. Then system
A is sufficient for system B if and only if one of the
following sets of inequalities holds:

p < pYo < b1 < P < o (A1)

or

oo < ph < b1 < plo < oty (A2)

1) Proof that, if system A is sufficient for system B,
then it follows that (A1) or (A2) holds. Using the solution
for u and v from (21) and (22) and applying the con-
dition that 0 < u < 1 (to ensure sufficiency), the fol-
lowing set of inequalities holds (with no loss of gen-
erality, it is assumed hereafter that p5; > p5):

pi(pto — o) < pfoleto — pB1) < pholoto — p1)
+ pfo(pr — PR (A3)

Since p%, > pb, it follows that p% > p, > p% and the
inequality on the left in (A3) can hold only if pfy
< pB,. Cancelling common terms in the inequality on
the right in (A3) reduces this inequality to

pPi(pTo — pho) < pilplo — plo). (A4)

However, for (A4) to hold, it follows that pfy < p%.
These results can be combined into the following set
of inequalities:

A

pfo < plo < p1 < b (AS)

Applying similar arguments to the set of inequalities
arising from the condition that 0 < v < 1 (to ensure
sufficiency), it follows that

P < pi < phi < pfh. (A6)

Combining (AS) and (A6) establishes (Al). A similar
argument can be used to establish (A2), under the as-
sumption that p? < ph.

2) Proof'that, if (A1) holds, then system A is sufficient
Jor system B. [A completely analogous proof, assuming
(A2) holds, will be omitted to conserve space.] To prove
that system A is sufficient for system B, it suffices to
show that the values of u and v [as solutions to (21)
and (22)] both lie in the closed unit interval. (i) From
(A1), it can be seen that

c(pr — pho) < (P} — o) (A7)
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for any non-negative number ¢. Adding the positive
term (p; — pho)(p® — p) to both sides of (A7) and
rearranging terms yields

(0% — pfo)c + b1 — pTo).
(AB)

(p1 — pro)pP — plo + 0 <

0, (A8) becomes
(p1 — PRo)(eTt — pTo) < (o1 — PTo)(p1 — plo).  (A9)
Dividing both sides of (A9) by the positive quantity

(0% — pfo)(p1 — p,o) and making use of (Al) establishes

that 0 < u < 1, since u = [(p1 — plo)(pi1 — pT0))/[(oT:
— pho)(p1 — mo)] [from (21) and (22)]. (i) From (A1),

it can be seen that

Setting ¢ = pho — pfh =

P]131 >p—dl - (Pl - /Jlo)/(ﬂ?i - Pio)] (A10)

for any non-negative number d (the expression in
square brackets is greater than zero). From (A10), it
follows that

(k% — p1 + d) > dl(py — p)/(PY — pT0)].  (A11)
Setting d = p} — pB, = 0, (A11) becomes
(ot — 1) > [N — pP)/e% = pTo)l(or — pTo).
(A12)

It can be immediately seen from (A12) that 0 < v
< 1, since v = [(py — P?O)(PIBI - Pf‘i)]/[(ﬁi’i - Pllso)(Pl
— p1)] [see (21) and (22)].

APPENDIX B
Proof of Lemma 2

Lemma 2. Let A and B represent two matched bi-
nary-event primitive probabilistic forecastmg systems
Without loss of generality, assume that pf, > pf. Now
if BS® < BS,”, then system B is sufficient for system
A, where

BSA = min(BS', BS®) = min[popfo, p1(1 — pT)].

‘ (BI)

Proof: BS* can be expressed by the Brier scores of
two crmcal systems Cl and C2 with p§! = 1, p§i
= pfyand p§? = pty, p§¢ = 0. From Lemma 1 it i$ clear
that both C1 and C2 are sufficient for A. Consider now
a system B satisfying BS® < BS.*; that is, BS® < BS®’
and BS® < BS2. From these ordinal relationships, as
stated in section 5b, neither C1 nor C2 can be sufficient
for B as a consequence of Theorems 9 and 4 in DeGroot
and Fienberg (1986). That is, B is either sufficient for
C1 or B and C1 are insufficient for each other and B
is either sufficient for C2 or B and C2 are insufficient
for each other. This statement reveals the existence of
four distinct cases, each of which will be shown to imply
that B is sufficient for A. It is now assumed, with no
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loss of generality, that p% > p%; otherwise, we would
have to consider four other, completely symmetric
statements.

1) B is sufficient for C1 and B is sufficient for C2.
These conditions imply, from Lemma 1, that p%, = 1
and p% = 0. The latter represent perfect forecasts, ob-
viously indicating that system B is sufficient for sys-
tem A.

2) Bis sufficient for C1 and B and C2 are insufficient
for each other. These conditions are only possible (from -
Lemma 1) if p5; = 1 and 0 < p% < p’%, from which it
is evident that system B is sufficient for system A.

3) B and C1 are insufficient for each other and B is
sufficient for C2. These conditions are only possible
(from Lemma 1) if p5 = 0 and pf, < o}, < 1, from
which it is evident that system B is sufficient for sys-
tem A.

4) B and CI are insufficient for each other and B
and C2 are insufficient for each other. These conditions
are possible (according to Lemma 1) only with the fol-
lowing ordering on the relevant conditional probabil-
ities: 0 = o3 < plo < o = plo < o7 = ot < Pl
< pf! = 1. However, Lemma 1 implies that, with this
ordering, system B is sufficient for system A, which
completes the proof and establishes Lemma 2.
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