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ABSTRACT

In the practice of forecast verification, the results of applying scoring rules appear to depend on the way
the predictand is classified. This paper contains an examination of the sensitivity of six scoring rules to the
classification. The approach is purely theoretical, in a sense that a Gaussian model for both forecasts and
observations is designed. Scoring results for this model are calculated for different scoring rules and different
classifications, -

The results appear to favor the Ranked Probability Score (RPS), which is almost insensitive to the
classification. Further, categorical scoring rules show a better performance in this respect than probabilistic
scoring rules, except for the RPS. The use of the other three scoring rules (for probabxhty forecasts) should
not be recommended for the verification of forecasts of ordered prednctands, that is, in case the classification
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involves more than two classes.

1. Introduction

Results of forecast verification by means of scoring
rules should provide a measure of some attribute of
the forecasts. The attribute of concern may be, for
instance, accuracy or skill. In practice scoring results
appear to depend on other conditions too. Particularly,
the frequency distribution of the predictand con-
cerned, and the way it was classified, play a role.
Therefore, verification figures of forecasts for different
predictands generally are not comparable, even in the
case that the same scoring rule was applied.

In practical experiments, the use of different scoring
rules for the same predictand also appears to provide
a wide variety of results. Daan and Murphy (1982)
presented verification figures of 2570 experimental
probability forecasts of wind speed For this sample
the results were:

Ranked Probability Skill Score: 13.9%
Probability Skill Score: 2.1%
Logarithmic Skill Score: 4.6%.

Some skill scores also seem to depend rather strongly
on the classification of the predictand. In the case
mentioned above, the predictand was divided by
three thresholds into four classes. A coarser classifi-
cation in two classes, by maintaining only the middle
threshold, would have resulted in a Brier skill score
of 10.8%, quite different from the 2.1% result.

Not only the number of classes may play a role,
but also the nature of the classification; that is, the
way the thresholds are divided over the scale of the
predictand. The division may be balanced with respect
to the interval width (the distance between subsequent

© 1985 American Meteorological Society

thresholds), or with respect to the frequency of each
class, or even be quite unbalanced.

In summarizing, we find that verification results
may depend on:’

o the skill of the forecasts,

o the frequency distribution of the predictand,
o the scoring rule that was used,

e the number of classes, and

o the nature of the classification.

It is evident that skill scores preferably should reflect
the skill of forecasts only. For that reason a study
was dedicated to the sensitivity of six selected skill
scores to the classification of the predictand. The
approach taken to the problem was purely theoretical.
A model has been designed, describing the predictand
and its classification (Section 2) and the (probability)
forecasts (Section 3). Section 4 contains a summary
of the skill scores that were selected for examination.
For each skill score and for two types of classification,
diagrams were plotted, recording the scoring result as
a function of a quality measure of the forecasts and
of the number of classes (Section 5). From these
graphs, finally, conclusions are drawn concerning the
representativeness of the scoring results (Section 6).

2. Modeling of the predictand and its classification
a. The predictand

The predictand is assumed to be a one-dimensional
quantity. That is, each observation can be character-
ized by a real number. Further, the climatological
frequency distribution is assumed to be a Gaussian
function, with a mean value of 0, and a standard
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deviation of 1. In this paper a Gaussian function
generally will be denoted as

&(xlu, o), 2.1

where x denotes the argument, g the mean value,
and o the standard deviation. The integral of this
function over the interval (x,;, x;) will be denoted by

G(xy, X, o). (2.2)

b. Number of classes

The number of classes is denoted by 7. Six values
of T will be used, given by

T,=2"(r=1,2,3,4,5,6). (2.3)

Consequently, the number of classes is defined by the
classification parameter r. Each class (except for the
lowest class) corresponds with an half-open interval,
the lower bound being included, the upper bound
excluded. Further, the classifications are defined in
such a way, that each class of classification r includes
exactly two contiguous classes of classification r + 1,
as shown in Fig. 1.

The parameter ¢ denotes the rank order of a class,
taking values from O through 7 — 1.

The climatological frequency of class ¢ will be
denoted by ¢,. The parameter C, will represent the
climatological frequency of occurrence of classes,
smaller than or equal to ¢

13
C;z ECJ‘.

J=0

2.4)

¢. Nature of the classification

Two basically different systems of classification
have been involved in the model.

1) EQUIDISTANT (CONSTANT WIDTH) CLASSIFICA-
TION

Here all classes, except for the first and last class,
are intervals of an equal width. This width depends
on the number of classes in the following way:

width = 8/T,

Tg=64: |t=0|t=1 t=2||:=3 t:AF:S t:élj t=8_|:9 “en .o t=63
T5=32: t=0 t=1 t=2 t=3 t=4 ..t=31
T4=162 t=0 t=1 t=2 ..t=15
T3= 8: t=0 t=1 “ee ot=7
To= 4: t=0 vee aets3
Ty= 2: t=0 ... ..t=l

FI1G. 1. Definition of the classifications for each of six values of r.
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The parameters b, and b,, will denote the lower
and upper bound, respectively, of class ¢ in classifi-
cation r. The bounds of the classes are defined as
follows:

br1=*4+8t/Tr for ¢= 1’ .'.’T— 1’

bo=—0c0 and b= +o0. (2.5)

Both of the outer classes have an infinite width
(nevertheless, their frequency of occurrence is ex-
tremely small).

2) EQUIFREQUENT (CONSTANT FREQUENCY) CLAS-
SIFICATION

Here the classes are chosen in such a way that the
climatological frequencies ¢, of all classes ¢ are equal
to 1/T. In the vicinity of zero, the interval width of
the classes is very small (for finer classifications about
15 of the width in the equidistant case), and it grows
larger for greater departures from zero. The bounds
are defined by

G(by, busil0, 1) = ¢, = IT,. (2.6)

3. Modeling of the forecasts
a. General description

The forecasts are assumed to be derived directly
from a judgmental probability distribution. The latter
is represented by a Gaussian function with a mean
value m’' and a standard deviation s’. For the com-
putations, it was necessary to limit the number of
possible forecasts. Therefore, the number of possible
judgments was restricted, by permitting only 32 dis-
crete values of m’. The subscript i will be used to
identify the judgment; m} is the mean of the proba-
bility distribution associated with judgment i (i taking
values from 1 through 32). The standard deviation s’
was assumed to be invariant with respect to i. The
probability of occurrence of class ¢, based on the ith
Jjudgment, is denoted by

pil = G(brt, er-l,m;" sl)' (3'1)

The cumulative probability of occurrence of a class
smaller than or equal to ¢ is denoted by

Py = G(=00, bysilmi, s'). (3.2)

The forecasts may be biased; that is, the frequency
distribution f; of observations after a forecast based
on judgment i is not necessarily identical to the
forecast probability distribution p;. We will assume
that f; (again) is Gaussian, with a mean value m;, and
a standard deviation s. Then, the observed frequency
of class ¢, after forecasts based on judgment i, is
denoted by

Jit = G(by, bysilmy, 3), (3.3)
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and the cumulative frequency of occurrence of a class
smaller than or equal to ¢ is

Fit = G(—w, brl+l|mi9 S). (34)

b. Definition of judgments

The frequency of issue of each of the 32 possible
forecasts is not arbitrary. For each possible forecast,
a frequency distribution of observed values is defined,
and we should require that the total of these 32
distributions equals the climatological frequency dis-
tribution. This was achieved by means of the following
procedure. For the 32 possible values of m, the lower
equifrequent class bounds b, for odd values of ¢t were
chosen. Consequently m; is defined by

(i=1,2,3 +-+,32). (3.9

Then a weighting function W(i) was defined, repre-
senting the frequency of occurrence of judgment i

W) = Glbsai-2, be2id0, (1 — s, (3.6)

where (again) the bounds b are derived from the r
= 6 (T = 64) equifrequent classification. With these
definitions, the requirement that:

m; = be i1

3
2 WO fu=q (3.7)
=1

is approximately met.

¢. Quality of the forecasts

If the forecasts are unbiased, that is, if p; = f;, for

all { and ¢, then evidently s is a measure of the skill
of the forecasts. In particular, if s = 1, then the
forecast probabilities are identical to the climatological
frequencies, and the forecasts are completely unskilled.
On the other hand, if s = 0, then the forecasts are
perfect. In the case the forecasts are biased the
relationship is weaker, but still existing. We will
introduce an attribute “quality” of the forecasts here,
to be represented by a parameter g, with

g = 10(1 — ). (3.8)
In the model we will use ¢ in order to generate
forecasts with different skill. Scoring results will be
calculated for integer values of g, from O through 10.
It should be noted that g is not assumed to be a
quantitative measure of skill. On the other hand,
when different samples of forecasts are equally biased,
then skill is uniquely defined by gq.

Nota bene. As opposed to s, the quantity g has a
positive orientation; that is, higher values of g corre-

spond with higher quality.

d. Bias in the forecasts

Bias in the forecasts may appear in two forms: 1)
overconfidence and underconfidence, represented by
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differences between s’ and s, and 2) systematic errors,
represented by differences between m' and m. In this
study only two cases are taken into account.

e Unbiased forecasts:

’

(3.9)

¢ Biased forecasts: here a (quite arbitrary) bias is
introduced, defined by:

m=m and s =3s.

m=m-—03s and s' =0.8s. (3.10)

This bias represents a 25% overconfidence on the
part of the forecaster, and a systematic error of 0.3
times the standard deviation.

4. The skill scores under examination

The sensitivity to the classification was originally
observed in specific scoring rules for probability fore-
casts. Hence all the known scoring rules for this type
of forecasts were involved in the study: the Probability
score, the Ranked Probability Score, the Logarithmic
Score and the Spherical Scoring Rule. .

In effect, the study could easily be extended to
scoring rules for categorical forecasts. The latter can
be divided in two types: point-estimate statements, if
only one value (or class) is forecast, and alternative
statements, when each class is either forecast or not
forecast. The first type of forecasts is verified by some
measure of distance between forecast and observed
class. Verification of the second type is based on the
frequency of hits. Each of these verification schemes
is represented in the study: the Mean Square Error
Skill Score for point-estimate forecasts, and the Per-
formance Index for alternative forecasts.

In the following, the six skill scores to be examined
will be introduced. All scoring rules are formulated
as skill scores; that is, the definition is such that a
purely climatological forecast yields a zero result,
whereas perfect forecasting is rewarded by a result 1.
For each skill score, and for 6 values of r and 11
values of g, the expected scoring result (based on
observed frequencies f; for each judgment i) had to
be calculated. These expected values will be denoted
by the symbol E. In the introduction of the skill
scores, the formulae for calculating these expected
scoring results will be recorded as well. A separate
Subsection 4g is devoted to the derivation of these
formulae.

a. The mean square error skill score (MSE)

The MSE is a verification measure for point-
estimate forecast statements. It is based on the squared
distance between forecast value and observed value.
In the verification scheme there is basically no need
for a classification of the predictand. In this study,
however, we will adopt the version that was suggested
by Vernon (1953). This implies that the original scale
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of the values of the predictand is replaced by a new
discrete scale, involving the rank order of the classes.
In this context MSE may be defined as follows:

MSE = 1 ~ (t, — t,)/E(t. — t,)%, 4.1)

where

t, is the forecast class (the class to which the fore-
cast mean value m’ belongs),

t, is the observed class,

t. is the class to which the climatological mean
(that is: 0) belongs: ¢, = T/2, and

E denotes the expected value of (f, — ¢,)%, which is
a climatological constant.

The expected value of MSE may be evaluated from

. 32 T-1
E(MSE) = 1 — 2 {W(@)- 2 [fi-(t, — 121}/
i=1 =0
71
2 e (T2-11 42
=0

b. The performance index (PERF)

The Performance index (PERF; Hanssen and Kui-
pers, 1965) may be considered as a good representative
of scoring rules for alternative forecasts (yes/no fore-
casts). The directive to the forecaster for this scoring
rule is that a class should be forecast when its
judgmental probability exceeds the climatological fre-
quency; otherwise the class should not be forecast.
The score reads:

T-1
2 [B:(0; — ¢1)]
PERF = =% , (4.3)
1= (Ctz)
=0

where

B: = 1 if class ¢t was forecast (if p, > ¢,), otherwise 3,
=0,

o, = 1 if class ¢ was observed, otherwise o, = 0.

The expected value of PERF may be calculated from

32 T-1
E(PERF) = 2 {W(i)- 2 [B:u(fi — c)1}/
i=1 =0

-1
[1—- 2 49
=0

where 8;, = 1 if G(b,, b,.+1Im}, ") > c,, otherwise B,

¢. The probability skill score (PROB)

The Probability Skill Score (PROB) considered
here is a transformation of the Probability Score
(Brier, 1950) and can be expressed as follows:
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-1 71
PROB=1- X (p,—o)/[1 = Z (D). (4.5)
=0 =0

The expected value of PROB is:

32 T—1
E(PROB) = 1 — X [W(i)+ 2 (0% — 2pufy + fu)l/
i=1 =0
T-1

[1- 2 @) 46
=0

d. The information index (INFO)

This skill score is a slight modification of the
Information Ratio, developed by Holloway and
Woodbury (1955). The formula, used here, reads:

-1
INFO = 1 = In(p,)/ 2 [¢,*In(c))],

=0

where the subscript o refers to the observed class.
The expected value is:

T4

£} -1
E(INFO) = 1 — 2 {W(i)- 2 [fu-In(pu)]}/
i=1 1=0

-1

2 [c+In(c)).

=0

(4.8)

e. The ranked probability skill score (RPS)

This index is a linear transformation of the RPS,
as it was designed originally by Epstein (1969) and
reformulated by Murphy (1971):

-1 -1
RPS=1— X (P-0)Y/X [Ci:(1-C)l, (4.9)
t=0 =0

where P, and O, denote the probability and observation
(ves = 1, no = 0), respectively, of classes smaller
than or equal to ¢. In the same way F; is defined as
the frequency of observation of classes smaller than
or equal to ¢, associated with forecast i. Now the
expected value of RPS may be calculated from:

32 -1
ERPS) = 1 — 2 [W(i)+ Z (P}, — 2P,F; + F))/
i=1 =0
-1

2 [C-a-C) (4.10)
=0

J- The spherical scoring rule (SPHER)

This score was mentioned in meteorological liter-
ature by Winkler and Murphy (1968). The formula
is transformed into a skill score:

71 -1
P/l Z (AN = /[ 2 (D)2

t=0 t=0

SPHER = —
1=[2Z (I
=0

4.11)
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The subscript o, again, refers to the observed class.
The expected value of SPHER is

32
E(SPHER) = 3 (W(J)- {E (Dufi)1 Z (w1
1

i= =0

LIS @I - LD @) @12)
=0 =0

8. Derivation of the formulae for expected scoring
results

A discussion of the definitions of the skill scores is
beyond the scope of this paper. The reader is referred
to the authors mentioned in the above subsections.
For a comprehensive treatment of these skill scores,
see Daan (1984). \

The formulae for expected results are derived in
the following way. A scoring rule V is a function of
forecasts and observations:

(4.13)

In the model used here the number of possible
forecasts is 32 and the number of possible observations
is T. The relative frequency of forecast i is given by
W (i), whereas the relative frequency of observed class
o0 is given by f,. Therefore, the expected value of V'
may be written in general as:
T_
2 W) 2 fi,» V(forecast i, observation o).

i=1 o=0

V = V(forecasts, observations).

E(V) =

(4.14)

We will give an example (for the Probability Skill
Score) of the way this scheme is carried out. In the
definition of PROB (4.5), the left-hand term (1) and
the denominator of the right-hand term are constants.
We will deal with the numerator of the right hand
term only:

-1 T-1 T-1
V= E(pt'—ot)z— ZP -2 2 pro+ 2012-
t=0 =0 =0 t=0
4.15)

As 02 = o,, and o, = 1 for only one class (otherwise
o, = 0), we may write:
-1

V=2 p12 -

=0

2p, + 1. (4.16)

According to (4.14), the expected value of V' is

-1 -1
EWV) = EW(I') 2 fio (T pi—=2pi+ 1)
i=1 0=0 =0

W(’) [E pt -2 2Ploﬁ0+ Eﬁo] (4 17)

=0 0=0

v

Now o0 may be replaced by ¢, and we arrive at (4.6).
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5. Results and discussion

The results are recorded graphically in Figs. 2-5.
In the diagrams, the parameter ¢ (in the diagrams
recorded as Q) is plotted on the abscissa, representing
the “quality” of the forecasts. On the ordinate, the
parameter r (in the diagrams recorded as R) indicates
the number of classes. Figures 2 and 4 reflect an
equidistant classification, whereas Figs. 3 and 5 refer
to an equifrequent classification. In Figs. 2 and 3 the
forecasts are unbiased, whereas in Figs. 4 and S a
bias is introduced as described in Subsection 3d. The
scoring results are recorded by isopleths in intervals
of 10%.

In Table 1, a quantitative survey of the results of
unbiased forecasts for an equifrequently classified
predictand is recorded. These data correspond to the
diagrams in Fig. 3.

The scoring results of perfect forecasts (¢ = 10,
unbiased forecasts) are not always exactly equal to 1.
This may be caused by the fact that the formula for
the weighting function W(i) is only a discrete ap-
proximation. Moreover, the limitation on the number
of possible judgments is not in accordance with the
concept of perfect forecasting.

In the introduction, the proposition was stated that
a scoring rule should return scoring results and reflect
only the attribute of concern of the forecasts (i.e., the
skill). This implies that a scoring rule should not be
sensitive to the classification of the predictand. Since
a very coarse classification may not be expected to
do complete justice to very skillful forecasts, this
requirement may be restricted to finer classifications
only. In any case, a dependence of the scoring result
V on g only should be considered an advantage of
the scoring rule of concern. In the graphs this can be
tested by checking whether the isopleths are (approx-
imately) vertical lines, at least in the upper part of
the diagram.

From the graphs, we find that this requirement is
met by far the best by the RPS. The other three
scores for probabilistic forecasts (PROB, INFO,
SPHER) are clearly very sensitive to the number of
classes. Moreover, the latter tend to approach to zero
for finer classifications, only partly depending on the
forecast quality parameter g. Results for both of the
categorical scoring rules (MSE and PERF) at least
tend to verticals for finer classifications.

An explanation for the difference in behavior of
the RPS versus other scoring rules for probability
forecasts is not obvious. The fact that the latter scores
are not sensitive to distance, as opposed to the RPS
(Staél von Holstein, 1970) may be important. If so,
then the desirability of this property is emphasized
strongly by the results. On the other hand, the results
for the Performance Index (which is not sensitive to
distance either) seems not to agree well with this
assumption.

In any case, probability scores seem to be sensitive
to the magnitude of the probabilities involved. This
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FIG. 2. Scoring results as a function of forecast quality and number of classes. The dashed
line represents the 50% score isopleth. Abscissa: values of ¢(Q) from 0 to 10 (see Section 3c).
Ordinate: values of r(R) from 1 to 6 (see Section 2b). The forecasts are unbiased (see Section
3d). The classification is equidistant (see section 2c).
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magnitude decreases globally in inverse ratio with the Except for the RPS, scoring results for an equifre-
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relationship does not exist. equidistant classification with the same number of
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TABLE 1. Scoring figures as a function of forecast quality and
number of classes. The forecasts are unbiased and the classification
is equifrequent,.

MSE
6 0 17 33 48 61 73 83 9% 95 99 100
S 0 17 33 48 61 73 83 90 96 99 100
4 1 17 33 48 61 73 82 90 95 98 100
3 2 18 33 47 60 71 81 88 93 97 100
2 3 22 34 47 58 68 76 8 89 95 100
1 3 29 41 51 59 67 74 81 87 94 100

PERF
6 2 16 24 32 39 47 55 64 75 8 98
S5 2 16 24 32 40 48 56 65 75 87 100
4 2 17 25 33 41 49 57 67 77 88 100
3 2 18 27 35 43 51 60 69 79 90 100
2 2 20 30 39 48 56 65 74 82 91 100
1 3 29 41 51 59 67 74 8t 87 94 100

PROB
6 0 O 1 1 2 3 4 6 9 19 49
5 0 1 2 3 4 6 8 12 18 35 100
4 0 1 3 5 8§ 11 15 21 31 53 100
3 0 3 6 10 15 20 27 36 49 72 100
2 0 6 12 19 26 34 44 55 69 84 100
I 0 12 23 34 44 54 63 73 82 91 100

INFO
6 0 3 5 9 12 17 22 28 38 53 83
5 0 3 6 10 15 20 26 34 45 63 100
4 0 4 8 13 18 24 31 41 53 72 100
3 0 5 10 16 23 30 39 50 64 81 100
2 0 6 13 21 29 39 49 60 73 87 100
1 0 9 19 29 38 49 59 69 79 90 100

RPS
6 0 11 21 32 42 52 62 7t 8t 90 98
5 0 11 21 32 42 52 62 71 81 91 100
4 0 11 22 32 42 52 62 71 81 91 100
3 0 11 22 32 42 52 62 7t 81 91 100
2 0 11 22 33 43 53 62 72 81 91 100
1 0 12 23 34 44 54 63 73 82 91 100

SPHER

6 0 1 3 5 6 8§ 11 15 21 34 67
s 0 2 4 7 9 12 16 22 31 50 100
4 0 3 6 10 14 18 24 32 43 65 100
3 0 5 10 15 21 27 35 45 59 79 100
2 0 8 16 23 31 40 50 61 74 87 100
1 0 14 26 36 46 56 65 74 83 91 100

classes. The choice of an equifrequent classification
instead of an equidistant classification seems essen-
tially equivalent to an extension of the number of
classes; that is, the results show much resemblance,
apart from a shift along the vertical axis.
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The slope of the isopleths seems somewhat more
regular when the classification is equifrequent, than
in the equidistant case. This holds particularly for
low values of r (coarse classifications). For finer
classifications the difference is negligible (that is, the
difference in slope, not in scoring results).

The difference between unbiased forecasts and
biased forecasts is small. Of course, scoring figures
are lower in the latter case, but the slope of the
isopleths seems independent of bias.

6. Conclusions

Six skill scores have been examined with respect
to their sensitivity to the way the predictand was
classified. For this purpose, a framework of forecasts
and observations was constructed. The main results
may be summarized as follows.

¢ The Ranked Probability Score is hardly sensitive
to the classification of the predictand, and conse-
quently, from this point of view, it should be consid-
ered the better scoring rule for probabilistic forecasts
of an ordered predictand.

e The Mean Square Error and the Performance
Index may be considered as useful scoring rules in
this context, provided that the classification is fine
enough. Because of their fundamental relationships,
this (probably) holds for several other scoring rules
too. The MSE represents a family of scoring rules, of
which the Root Mean Square Error, the Mean Ab-
solute Error, and the Variance also are members.
The Performance Index is strongly associated with
the Gringorten skill score (Gringorten, 1965) and
with Heidke’s skill score (Heidke, 1926).

e Other scores for probabilistic forecasts, as the
Probability Score, the Information Ratio, and the
Spherical Scoring Rule, appear to be highly sensitive
to the definition of classes of the predictand. Without
information on the nature of the classification, results
of these scoring rules should not be judged to be
representative measures of skill in forecasting. There-
fore, the use of the latter scores in the verification of
probability forecasts for an ordered predictand is not
advisable. As the RPS is the average of a number of
two-class Brier scores with different thresholds, this
recommendation should be restricted to classifications
into more than two classes. In other words, the
Probability Skill Score, the Information Index, and
the Spherical Scoring Rule should be applied to two-
class predictands only.

As the results of this study are based on quite
theoretical models of forecasts and observations, the
question might arise whether conclusions can be
transferred straightaway to operational forecast veri-
fication. For the negative results with respect to three
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probabilistic forecast verification scores the answer
should be that there are no firm grounds to suppose
that these scores would be less sensitive to the clas-
sification 1n operational practice. On the other hand,
it is possible that the sensitivity of the RPS to
classification might increase in operational forecasting.
This might be caused by forecast probability distri-
butions departing strongly from a Gaussian function,
and by very unbalanced classifications. For many
weather elements the main operational thresholds are
often located in extreme areas of the scale of the
predictand; e.g. visibility and cloud base in aviation
forecasts, or wind force in shipping forecasts. Nev-
ertheless, the difference in sensitivity observed in the
model between the RPS and the other three probability
scores is impressive, and the recommendation to
prefer the RPS in case of an ordered predictand is
not likely to be affected in operational circumstances.

From the viewpoint of a user the application of
the RPS instead of the Brier Probability Score is not
illogical. The RPS is based on probabilities of exceed-
ing certain thresholds, whereas in the Probability
Score the probability of occurrence of values in
certain intervals is involved. It is reasonable to assume
that the practical use of weather forecasts in general
corresponds better with the concept of thresholds
than with that of intervals.
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