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ABSTRACT

Highly negative skill scores may occur in regression-based experimental forecast trials in which the data being
forecast are withheld in turn from a fixed sample, and the remaining data are used to develop regression
relationships—that is, exhaustive cross-validation methods. A small negative bias in skill is amplified when
forecasts are verified using the correlation between forecasts and actual data. The same outcome occurs when
forecasts are amplitude-inflated in conversion to a categorical system and scored in a “number of hits” framework.
The effect becomes severe when predictor-predictand relationships are weak, as is often the case in climate
prediction. Some basic characteristics of this degeneracy are explored for regression-based cross-validation.

Simulations using both randomized and designed datasets indicate that the correlation skill score degeneracy
becomes important when nearly all of the available sample is used to develop forecast equations for the remaining
(very few) points, and when the predictability in the full dependent sample falls short of the conventional
requirement for statistical significance for the sample size. The undesirable effects can be reduced with one of
the following methodological adjustments: 1) excluding more than a very small portion of the sample from the
development group for each cross-validation forecast trial or 2) redefining the “total available sample™ within
one cross-validation exercise. A more complete elimination of the effects is achieved by 1) downward adjusting
the magnitude of negative correlation skills in proportion to forecast amplitude, 2) regarding negative correlation
skills as zero, or 3) using a forecast verification measure other than correlation such as root-mean-square error.

When the correlation skill score degeneracy is acknowledged and treated appropriately, cross-validation remains
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an effective and valid technique for estimating predictive skill for independent data.

1. Introduction

The desire to accurately quantify statistical forecast
skill has existed among meteorologists and oceanog-
raphers for many years. Estimates of predictive skill
based on a posteriori data-fitting techniques such as
regression using limited samples are characteristically
higher than the skill would be in the population from
which the sample is drawn. This is reflected in the gen-
erally lower skill levels obtained when the sample
equations are used to forecast future or otherwise in-
dependent data.

In order to reduce the problem of artificial skill pro-
duced from overfitting and thus receive a more rep-
resentative estimate of real skill, researchers have used
cross-validation methods, in which forecast models
(regression or other) are developed using only part of
the available dataset and then applied to the indepen-
dent data points left out. The number of points left
out can range from one to more than half of the avail-
able dataset, and the set of removed points may be
changed so that a large number of forecasts (perhaps
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for all possible combinations of a given number of
withdrawn points) can be made. With the relatively
recent introduction of larger computers, cross valida-
tion has come to imply such exhaustive or quasi-ex-
haustive trials. Discussion and/or examples of cross-
validation in association with regressionlike approaches
are found in Klein (1983), Van den Dool (1984),
Harnack et al. (1985), Dixon and Harnack (1986),
Michaelsen (1987), Barnett and Preisendorfer (1987),
and Livezey et al. (1990) (the Klein and Van den Dool
studies do not use the exhaustive version). Cross val-
idation has also been used in analog forecasting (Bar-
nett and Preisendorfer 1978; Livezey and Barnston
1988).

When cross-validation is applied under appropriate
circumstances (i.e. using data that are stationary and
not significantly autocorrelated ), it generally produces
scores representing the skill expected on application of
the sample relationship to independent data—that is,
lower skill scores than those produced in full dependent
sample analyses. However, there are features in the
design of cross-validation experiments that can intro-
duce biases or degeneracies in the results under some
circumstances, unless specific preventive measures are
taken. An example of a flawed design leading to sub-
stantial artificial skill in certain types of analog forecasts
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using cross-validation is discussed by Van den Dool
(1987). In this study another example of a design flaw
is presented.

This study identifies, illustrates, explains, and pro-
vides solutions to the problem of the perhaps unex-
pected appearance of highly negative skill scores using
a regression-based cross-validation design when the skill
score is computed as a correlation, or percent variance
explained, between the set of forecasts and the corre-
sponding set of actual data. This also occurs when
regression-based forecasts are converted to a categorical
forecast system (and scored using a “number of hits”
skill measure such as the Heidke score), if the original
amplitude of the forecasts is inflated. In either case, it
occurs in low predictive skill environments in which a
near-zero skill score would be reasonably expected.
Awareness of the problem began with the occurrence
of highly negative correlation-based skill scores in on-
going prediction research at the Climate Analysis Cen-
ter. It is considered a problem both for aesthetic reasons
(e.g., the appearance of intensely negative “bull’s-eyes”
on spatial maps of forecast skill) and for more sub-
stantive reasons (e.g., the computation of a mean skill
score over a spatial domain).

In section 2 the cross-validation procedure is de-
scribed. Section 3 provides illustrative examples of the
degeneracy under study; subsections 3a and 3b are most

vital here. In section 4 some features of the degeneracy -

are explained quantitatively, the difference between this
phenomenon and “ordinary” artificial skill is discussed,
and solutions to the degeneracy problem are presented.
A summary and some conclusions are given in sec-
tion 5.

2. Cross-validation procedure

In an exhaustive cross-validation experiment, a
sample of data is first defined, consisting of one pre-
dictand and one (or more) predictors and a prescribed
number of paired elements (predictor-predictand
“points”—e.g., each point representing climate data
for, say, a particular year). Typically the sample is
drawn from a population with a potentially infinite
number of points, and is the largest possible sample
given the practical considerations of the real world.
Then the cross-validation exercise is performed in
which a given number of points are withheld from the
sample, a regression equation is developed using only
the remaining points, and forecast(s) is made for the
value(s) of the predictand of the withheld point(s),
using the predictor value(s) of the latter point(s). Be-
fore forming the regression equation, the developmen-
tal points are restandardized in terms of their own mean
and standard deviation, and the withheld points should
be standardized in terms of these same newly computed
statistics for the verification process (Van den Dool
1987). The exercise is repeated exhaustively such that
each possible combination of the given number of ex-
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cluded points is used as the forecast target. Finally, a
correlation (or other skill score such as root-mean-
square error or mean absolute error) between forecasts
and verifications is computed.

3. Examples

The degeneracy under examination only occurs sys-
tematically when a fixed “full sample” of data is defined
for cross-validation testing. In actual or operational
forecasting it is not observed, because the full sample
continues to change as each new datum is acquired.
In this section we examine the degeneracy in various
simulated cross-validation conditions.

In performing the simulations, two types of datasets
are used. The first type is random, in which case a
random number generator is called to supply numbers
from a Gaussian distribution to form the predictor (x)
and predictand () groups of size N. In this case it is
necessary to perform many iterations, each using a dif-
ferent pair of random datasets, because any individual
pair does not contain exactly Gaussian x and y and
could produce unrepresentative results. The perfor-
mance of many iterations not only provides a more
realistic mean result but also provides useful estimates
of the distribution (i.e., variability) of the results.

The second type of dataset used in the experiments
is the designed dataset, in which a single prototype or
textbook version of a dataset is constructed. For ex-
ample, a bivariate Gaussian distribution might consist
of symmetric rings of points in the x, y plane positioned
about the origin according to the Gaussian probability
density. A disadvantage here is that no distributional
information is provided in the test results. The advan-
tage is that an approximate mean result can be obtained
more quickly. The representativeness of a designed da-
taset is verified through comparison of its results with
the mean of the results using a large number of ran-
domized datasets. Once verified, the designed dataset
is trusted in more computer-intensive experiments for
which only the mean result is desired.

a. Prototypical illustration

The simplest cross-validating experiment illustrating
the behavior under study uses a designed dataset with
four pairs of predictor-predictand (x, y) values: (1, 1),
(1, —1), (-1, 1), and (—1, —1). The correlation be-
tween x and y is zero. An unbiased cross-validation
skill-estimating technique would be expected to pro-
duce a skill of zero in predicting y from x from this
dataset if each of the four points were withdrawn and
used as the forecast target in turn. However, a cross-
validation correlation of —1.0 is the result, implying
that the forecasts are always of opposite anomaly sign
to reality with a perfectly predictable amplitude rela-
tionship. This result comes about not because of the
smallness of the sample; in fact, using 100 points at
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each of the four locations also produces a —1 correla-
tion. This occurs because when any one point is with-
held as the forecast target, the remaining points no
longer have zero correlation but have a correlation with
sign in keeping with an axis of scatterplot elongation
perpendicular to that of the line connecting the origin
to the removed point. In the four-pair experiment, for
example, when the point (1, 1) is removed, a negative
correlation { —0.50) is produced among the remaining
three points. When the predictor value (x) of the re-
moved point is introduced in the resulting regression
equation, the forecast for the predictand value (J) of
the point is half the correct amplitude and has the in-
correct sign. The amplitudes of the forecasts for the
other three points are similarly half the true amplitude
and have the incorrect sign, and a —1 correlation be-
tween forecasts and observations appears. When the
sample size is progressively increased for the same four
locations, the correlation among the remaining points
when one case is withdrawn becomes increasingly
smaller, the regression cocflicients and the amplitude
of the forecasts approach zero, but the signs of the
equally weak forecasts are still opposite those of their
observational counterparts; thus, the correlation be-
tween forecasts and observations again is —1. This effect
1s clearly outside the expected sample size-related sta-
tistical variability. In fact, the mean skill value itself is
altered from that expected in a zero-skill forecast en-
vironment, due to an inherent feature of the cross-
validation design.

The near-zero amplitude forecasts of the larger sam-
ple experiments would verify with approximately zero
skill (i.e., skill near that of a climatology forecast ) rather

than highly negative skill if an rms error (RMSE) score

or a categorical hit versus miss score (as in Dixon and
Harnack 1986) were used rather than the forecast ver-
sus observation correlation measure (for categorical
forecasts this near-zero skill expectation holds only in
the absence of forecast amplitude inflation; i.e., no
forecasts would fall in the outer categories).

The above example is contrived and simplified.
However, its behavior occurs to varying degrees in real
world regression-based cross-validation, creating a
problem different from the more familiar artificial skill
(shrinkage) phenomenon discussed in Davis (1976)
and elsewhere. We next examine the seriocusness of this
effect (to be called a degeneracy) for realistic values of
the major parameters of regression and cross-valida-
tion, given various “true” values of the full sample
correlation between predictor(s) and predictand.

b. Dependence on sample size

The cross-validation simulation of the type described
in subsection 3a can be extended to different initial x
versus y full sample correlations by moving each point
closer to or farther away from the 45° y = x line along
its perpendicular to that line by a fixed proportion of
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its initial perpendicular distance from the line. The
cross-validation skill can then be plotted as a function
of the full sample correlation. Such a plot is not shown
for the simple four-point designed (x, y) dataset dis-
cussed in subsection 3a, that dataset being used only
to demonstrate an extreme case of the basic mechanism
underlying the degeneracy.

To explore the effect of the number of full sample
points N on this behavior, we use a set of samples of
the more realistic normal distribution as drawn from
arandom number generator, and vary the sample size.
In this experiment 200 iterations of 64 complete rounds
of cross-validation (one round consisting of the holding
out of each of the N points in the sample by itself once
as the forecast target) are carried out, each iteration
using an independent random data sample. Within
each iteration the full sample correlation is systemat-
ically modified between —0.999 and 0.999 using the
technique described above, resulting in 64 values hav-
ing smaller differences (0.01) near zero, and larger dif-
ferences (0.05) near —1 and 1.

Figure 1 shows the resulting relationship between
the full sample (with no withheld points) correlation
and the cross-validation correlation (reflecting predic-
tive skill). This is shown for N = 16 (panel a), 32
(panel b), and 128 (panel ¢). In each of the three parts
of Fig. 1 there are two groups of five roughly parallel
curves, and also an uncurved y = | x| line with vertex
at the origin to highlight the expected relationship if
no bias (including the skill score degeneracy) existed.
The group of five curves that approximate the y = | x|
line for high full sample correlation magnitude and
have deep, well-defined minima near x = O describe
the cross-validation results using the correlation coef-
ficient as the scoring measure. Within this group the
solid curve represents the mean over the 200 iterations,
the short dashed curves plus and minus one standard
deviation from the mean, and the longer dashed curves
the maximum and mintmum results. (Note that the
extreme curves can have noticeable “wiggles™ because
they may represent the outcome of one particular
round of cross-validation for a given full sample cor-
relation interval, and a different round for an adjacent
interval.) The minimum value of the mean cross-val-
idation skill occurs in the neighborhood of zero full
sample correlation; this is also where the greatest dis-
crepancy between the no-bias skill expectation and the
actual skill occurs. This minimum value becomes
somewhat stronger for smaller N. The degree of full
sample correlation required to achieve a given small-
ness of the bias of the mean results decreases with sam-
ple size. This is in qualitative agreement with the in-
verse relationship of artificial hindcasting skill (due to
overfitting) to sample size for a fixed number of pre-
dictor variables (Davis 1976; Michaelsen 1987). The
dispersion of skill (reflected in the two sets of dashed
lines) is substantial and is also inversely related to N.
The full sample correlation required to obtain a non-
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FIG. 1. Cross-validation correlation (correlation between forecasts and the data being forecast)
as a function of the full sample correlation between predictor (x) and corresponding predictand
(») data for 200 successively drawn samples of x and y datasets from a random Gaussian number
generator. The y = | x| line shows expected skill in the absence of biases. The two groups of five
approximately parallel curves in each of the three panels of the figure show experimental results
where each point (or “year”) is held out as the independent forecast target using full sample sizes
(N) of 16 (panel a), 32 (panel b), and 128 (panel ¢). Within each panel, the group of five curves
having more clearly defined minima near x = 0 show results using the correlation skill measure
(left ordinate scale) and the five with shallower minima using RMSE (right ordinate scale). The
full sample correlation value required for 0.05 significance is indicated on the lower abscissa. See
text (sections 3b and 4a) for further detail.
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negative mean cross-validation correlation skill appears
to be roughly =N ~'/2 in these particular experiments.
A more rigorous treatment of this characteristic of the
degeneracy will be presented in section 4a.

The group of five curves having broader but shal-
lower minima similarly represent cross-validation skill,
but using RMSE rather than a correlation coefficient
as the scoring measure (note ordinate scale on right
side of plot, in which 1.0 represents the RMSE score
of zero-anomaly or climatology forecasts). The y
= | x| line has no particular meaning with respect to
the RMSE curves. Noteworthy features of the RMSE
cross-validation results are 1) the comparatively small
negative bias at near-zero full sample correlation as-
sociated with the low forecast amplitudes, and 2) the
smaller variability of scores over the 200 random it-
erations than is found for the correlation skills, despite
evidence of a negative skew for low full sample cor-
relation values.

With the distributional features of the correlation-
measured cross-validation skill well described in Fig,
1 for three sample sizes, further experiments are next
performed to examine behavior under other specific
conditions of the data, the cross-validation design, or
the regression. In doing this, we are primarily interested
in the mean skill results and thus no longer require
evaluation of skill dispersion, which has been found to
be fairly large for the correlation skill measure. For
these additional tests, it is sufficient to use a single de-
signed Gaussian dataset rather than a long series of
random Gaussian datasets. For this purpose a 32-point
designed bivariate Gaussian dataset is constructed
(Table 1) and cross-validation correlation skill results

are calibrated against the mean results shown in Fig.
1. The designed dataset result is found to be represen-
tative of the mean of the random dataset results, ren-
dering it suitable for diagnosing the mean behavior in
good approximation in further testing. In the process
of performing these calibration tests it is found that
minor differences in the designed dataset do not sig-
nificantly change its simulated cross-validation skill
results. Although the full sample correlation among
the 32 (x, y) pairs in Table 1 is zero, it is modified
systematically using the technique described at the be-
ginning of this subsection.

TABLE 1. The individual points of the designed, approximately
Gaussian bivariate dataset used for some of the cross-validation sim-
ulation experiments.

Point number X y Point number X ¥y
1 ~-02 02 17 -08 -0.8
2 —0.3 0.0 18 -1.2 0.0
3 -0.2 0.2 19 -0.8 0.8
4 0.0 0.3 20 0.0 1.2
5 0.2 0.2 21 0.8 0.8
6 0.3 0.0 22 1.2 0.0
7 02 -02 23 08 —08
8 00 —03 24 00 -12
9 -0.5 -05 25 -1.3 =13
10 -0.7 0.0 26 -1.8 0.0
11 —0.5 0.5 27 -1.3 1.3
12 0.0 0.7 28 0.0 1.8
13 0.5 0.5 29 1.3 1.3
14 0.7 0.0 30 1.8 0.0
15 Q.5 —Q.5 31 1.3 -1.3
16 00 0.7 32 00 -1.8
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¢. Effect of outliers

While the finer details of a dataset design may not
affect the cross-validation skill behavior very much,
outlier points ( points falling relatively far outside the
general distributional cluster) do significantly affect
skill behavior (Michaelsen 1987). Examination of in-
dividual random data samples in the simulations whose
results are shown in Fig. | reveals that the atypical
cross-validation skills (e.g., those helping to form the
minimum or maximum curves of the five-curve en-
velope) have marked asymmetry in either or both x
and y, and sometimes one or more borderline outliers.
Sometimes the full-sample correlation producing the
minimum cross-validation correlation is somewhat re-
moved from zero in those cases.

In three consecutive simulations using the 32-point
designed Gaussian dataset discussed in subsection 3b
(Table 1), the point (#29) initially located at (1.3, 1.3)
is moved to (3.5, 3.5), to (5, 5), and finally to (10,
10). The 3.5 and 5 standard deviation anomalies are
representative of climate events such as the 1982-83
El Nifio or the Great Plains summer surface air tem-
peratures in the hottest dust bowl summer, whereas
the 10 standard deviation anomaly is performed only
as an extreme design experiment. Note that upon re-
standardization for the cross-validation simulations
with each point held out in turn, the standardized
anomaly value of the outlier is substantially reduced—
unless it is the point being withheld.

The result of the three outlier cross-validation sim-
ulations is shown in Fig. 2 along with that without an
outlier. Compared with the outlier-free reference case,
the outlier degenerative effects are more severe, and
include 1) a general broadening of the full sample cor-
relation interval within which the cross-validation cor-

1 YERR OUT WITH 1 OUTLIER, DESIGNED GAUSSIAN (N=32)
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o
<

P U E S | N .
-6.8 -0.6 -0.4 -0.2 00 0.2 0.4 0.6 0.8 1.0
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FIG. 2. Cross-validation correlation as a function of full sample
correlation with each of three designed outliers replacing the point
(1.3, 1.3) in a designed 32-point Gaussian dataset. The weakest outlier
is placed in scatterplot location (3.5, 3.5), followed by two progres-
sively more extreme outlier prescriptions: (5, 5) and (10, 10).
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FIG. 3. Cross-validation correlation as a function of full sample
correlation with a 32-point designed Gaussian density withholding
one (bottom solid curve), two (middle), and four (solid curve nearest
the dashed line) points (or “years”) in the cross-validation procedure.

relation skill is negative, 2) a stronger negative mini-
mum cross-validation skill, and 3) a migration away
from zero (toward positive values in this example) of
the full sample correlation producing the minimum
skill. This is the full sample correlation value for which
the outlier is most severely mispredicted when it is
withheld (the other points contributing to a relationship
of the opposite sign), and also for which the other
points are most consistently mispredicted due to the
outlier’s strong opposing influence in the development
subsample equation. The outlier creates a variation of
the simple and extreme case of the complementary
skill-destroying mechanism found in the four-point
designed dataset discussed in subsection 3a. An outlier
has an effect similar to that of decreasing the sample
size by reducing the influences of and differences be-
tween the other points. This was evidenced in an ENSO
cross-validation prediction study where a sea surface
temperature persistence forecast was used as a skill
control measure, and the 1982-83 El Nifio produced
an outlier in sea surface temperature persistence
(Barnston and Ropelewski 1992).

d. Dependence on the number of points held out

Figure 3 shows results using the designed 32-point
Gaussian dataset for simulations holding out all pos-
sible combinations of one, two, and four points. For a
full sample correlation of zero, the four-point removal
results in the least severely negative cross-validation
correlation (—0.41), followed by the two-point removal
condition (—0.53) and the most severe one-point re-
moval condition (—0.64). However, removing several
more points at a time does not visibly affect the non-
negative cross-validation scores or the zero-skill cross-
ing points, suggesting that only the behavior within the
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negative skill score interval is substantially affected by
the degeneracy-producing design flaw. The withholding
of more than four points was carried out using a de-
signed 12-point Gaussian dataset (to reduce the large
computational burden). Results withholding 1, 2, 4,
and 8 points out of 12 (not shown ) reveal that removing
even two-thirds of the sample further diminishes the
degeneracy only within most of the range of the already
negattve correlation skill scores. For positive cross-val-
idation skill scores the holding out of more points de-
grades skill and thus widens the interval of negative
skill (particularly noticeable in the case of holding out
four or eight points). This occurs as a result of the now
noticeably proportionally smaller development sub-
sample size, the effect of which was noted in Fig. 1 for
the fixed condition of one point being withheld. (Al-
though this occurs in the Fig. 3 experiments, it is not
detectable because of the proportionally similar de-
velopment subsample sizes.) These observations suggest
a distinction between 1) ordinary, expected skill defla-
tion when forecasting outside a development subsam-
ple of size N (Davis 1976; Michaelsen 1987) and 2) a
special cross-validation methodologically based de-
generacy primarily within the negative skill region.

e. Extension to multiple regression

Simulations are carried out for one point being
withheld, using two and then five predictors in multiple
regression to provide a ground for comparison to results
using simple regression.

In performing the multiple regression simulations,
the full sample correlation modifying technique (sub-
section 3b) is not used because of the complications
surrounding the plurality of the predictors—that is,
their own intercorrelations and the correlations of each
with the predictand. Instead, the full sample multiple
correlation is permitted to vary naturally by using many
samples of three- or six-dimensional random Gaussian
32-point datasets in succession, each set having its own
chance-produced predictors versus predictand muitiple
correlation. A disadvantage of this approach is the un-
availability of high correlation magnitudes; the main
concern, however, is with results at lower correlation
magnitudes where the expected problem is found.

Results of the simulations are shown in Fig. 4, where
panel (a) uses simple regresston, (b) uses two-predictor
regression, and (c) five-predictor regression. Because
the multiple predictor coefficients may vary in sign,
the square root of the multiple R squared value is used
to describe the full sample correlation represented by
the x axis. The strongly negative skill score degeneracy
appears to increase with the number of predictors, as
does the negative departure from the bias-free dashed
line for the positive correlation skill scores. The latter
effect is in keeping with the expectation of greater ar-
tificial hindcast skill for greater numbers of predictor
variables due to increased opportunities for noise fitting
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(Davis 1976; Michaelsen 1987). The addition of pre-
dictors not only appears to worsen the degeneracy but
also to increase its uncertainty as noted by the marked
vertical scatter of points in Fig. 4c. Results of the Fig.
4b two-predictor regression simulation repeated for 64
points instead of 32 (not shown) reveal a somewhat
lower average ordinate distance between the points and
the dashed no-bias line for both positive and negative
skills. An increase in the dataset sample size thus re-
duces both the degeneracy and, as expected, the amount
of “normal” artificial skill (Davis 1976; Michaelsen
1987) in multiple as in simple regression-based cross-
validation.

The multiple correlation cross-validation scoring
degeneracy has been encountered in an ongoing long-
range prediction study using the previous month’s ob-
served temperature and precipitation to parameterize
mean soil moisture in predicting the present month’s
mean surface air temperature (Huang and Van den
Dool 1993). For example, using 57 years of monthly
mean data, Fig. 5 illustrates the exhaustive one-year-
out cross-validation skill score degeneracy in the form
of several strong negative cross-validation correlation
skill pockets with a minimum value of —0.51 in North
Dakota and Washington states for two-predictor mul-
tiple regression.

4. Discussion, explanation, and solutions

The examples discussed in section 3, while varied,
have one feature in common: A full sample is defined,
and all cross-validation trials use all data points in the
full sample—either as part of the development sub-
sample or part of the verification subsample. Exhaus-
tive cross-validation involves great redundancy in the
participation of each point—for example, in a full
sample of size N where one point is held out in each
forecast trial, each point is included in a development
subsample N-1 times and in a verification subsample
one time. These exhaustive, reciprocal features allow
for a balanced and complete evaluation of the skill
score degeneracy, and hopefully a realistic estimate of
predictive skill in the theoretical infinite population of
points.

a. The regression-based cross-validation skill score
degeneracy

The rules of generalization of a regression relation-
ship from a developmental subsample to a comple-
mentary verification subsample within a fixed full
sample are quite different from the analogous rules
from a sample to a population. The key difference is
that in the latter case the population is inexhaustible,
such that the selection and removal of any defined
sample does not change the remaining population sta-
tistics or correlations.
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1) COVARIANCE INTERDEPENDENCE

When the full sample is used as a fixed “population”
from which to select rotating sets of developmental
elements and withheld elements for “independent”
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1 year out, 2 predictors, random gaussian (N=32)

FIG. 4. Simple versus multiple regression simulations using
64 independent samples of 32-point random Gaussian data
with one point held out in cross-validation: (a) simple regres-
sion, (b) two-predictor multiple regression, and (c) five-pre-

target tests, a complementary relationship arises be-
tween the predictor (x) versus predictand () statistics

for points (x, p) in the development subsample as
compared with those for point(s) (x, y) in the test
sample. Suppose that one point is withheld for each



May 1993

1004

BARNSTON AND VAN DEN DOOL

971

\ZION

SONI—

40Nf—

30N—

|
T20W

FIG. 5. Hlustration of the subject degeneracy in a study using correlation-verified cross-validation, two-predictor multiple
regression in prediction of monthly mean surface air temperature anomalies from previous month’s temperature and precipitation
anomalies (Huang and Van den Dool 1993). Here the geographic distribution of cross-validation skill is shown in predicting
August temperature using July predictors. Each trial of cross-validation holds out 1 year as the forecast target and uses all
remaining years to develop a regression equation. Units are correlation X100. The —0.1, 0.0, and 0.1 contours are not shown.
Areas of correlation skill score degeneracy are found in the northwestern United States with a minimum value of —0.51 in

northwestern North Dakota and northeastern Washington.

forecast trial, and that the x and y are standardized.
Let N denote the number of points in the full sample
(fs) and j be the point number held out as the forecast
target, leaving N — 1 points in the development sample
(ds). The full-sample correlation (7) can then be ex-
pressed as

L

N( 2 xiyi tx).

=1,N
i)

1
]—vzxiyi =

i=

s =

Let us assume for now that the restandardization of
the points on the basis of the development sample sta-
tistics causes only minor changes in the cross-validation
skill results (as will be discussed below, this is a realistic
assumption except in very small samples or when an
outlier is withheld). Thus, we approximate:

1
g = X’[(N = Drgs + 9]
or

1
N(Xj)’j) =rg— ras(N — 1)/N. (1)

To obtain a contribution toward a positive cross-val-
idation correlation skill in a single forecast trial within
a cross-validation exercise, the left side of (1) must be
of the same sign as ry,; that is, the sense of the x versus
y relationship in the withheld point must match that
found in the development sample. When r = 0, how-
ever, this can never happen, since, under these con-
ditions, (1) reduces to

1
& %) = ~ras(N = D/N. (2)

Because the x; and y; generally assume a variety of
nonzero values, exhaustive cross-validation using a
fixed full sample is expected to result in negative cor-
relation skill scores whenever |rg| is less than some
critical value r;.

The covariance interdependence here is analogous
to the interdependence of means discussed in Van den
Dool (1987) in the context of composite analog fore-
casting. In both cases the skill score is changed because
of a design defect rather than for reasons of substantive
interest. In the present case the design degeneracy is
deceptive because it is easily mistaken for the artificial
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skill effect related to sample noise fitting, as discussed
in Davis (1976) and Michaelsen (1987).

2) “WIDTH” OF THE DEGENERACY

To determine how large an ry, interval to expect to
result in negative cross-validation correlation skill
scores, we evaluate 7. in terms of N (assumed mutually
independent points) and certain important character-
istics of the (x, y) distribution. From (1), we have

_ Nrfs - XjYj
N—1

The forecast y; for any withheld y; is given by 74Xx;.
Therefore,

(3)

Fys

. _ X(Nrg — %)
e

If (4) is multiplied by the observed y; and summed
over all j, the result is

(4)

oo, Nrg Y i '

2 V= N_fsl Z Xy -5

j=1

The left-hand side is the sum of the cross products of
forecasts and observations used to compute the cross-
validation correlation skill score, and hence, carries the
sign of that correlation. Using the fact that 2, x;y;
= Nry, for standardized x; and y;, we obtain

N
2.2
2 2 Xjy;
Nrfs j=1 4

TN—-1

(3)

fs 7

N-1

The requirement for the left-hand side to be positive
is

N

2.2
2 xjy;
J=I

N-1"~

N°ri
N-1

or

)1/2 (N____ 1)1/2

Since the first factor on the right-hand side of (6 ), which
we denote as k, is essentially independent of N, we
find, approximately, |ri| > KN~'/2. The proportion-
ality factor k, for perfectly correlated x and y (or,
equivalently, for x* or y*), represents the square root
of the coeflicient of the fourth moment (kurtosis). For
a standard Gaussian distribution this coefficient is equal
to 3. However, for imperfectly correlated standard
normal x and y the coefficient is lower, and drops to
approximately unity for poorly correlated variables. It

N
|re) > (El xX}y}(N—1) (6)
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is also sensitive to deviations from normality in the x
or y distributions—particularly to the tendency for oc-
currence of simultaneous outliers in x; and y;. To il-
lustrate the degree of variability of k, its mean value
over 200 cross-validation simulations, each using an
independent set of 32 random normal (x, y) pairs, is
0.99 for rg = ryy, with a standard deviation of 0.33
and extreme minimum and maximum occurrences of
0.43 and 2.29, respectively (these numbers all inflate
slightly when x; and y; are restandardized using devel-
opment sample statistics). This introduces some un-
certainty to the determination of r.y, since rarely in
practice are the x and y distributions exactly Gaussian.
Taking the square root helps reduce this uncertainty,
which increases with decreasing N. To first order, then,
we conclude that |r.;,| = N~'/2. The r intervals as-
sociated with negative cross-validation skill in the ex-
amples in section 3 approximately adhere to this rule.
Near the center of the interval, skill scores become
highly negative because of the interdependent comple-
mentary (proportionately opposite) covariance rela-
tionship noted in (2).

3) EQUATION FOR CROSS-VALIDATION
CORRELATION SKILL

An approximate equation for the cross-validation
correlation skill, r.,, as a function of ry is developed
by dividing (5) by N and by the standard deviation of
the ;, or {rgs| (the mean of |r4| over N forecasts) so
that the left-hand side equals r.,. Then,

N

, =j§|yjyj= Nr,z-s _ k
« Nlrgl [ras| (N — 1) [ras] (N — 1)~

For |ri| > 7o, |7as| reduces to rg to close approxi-
mation. Assuming k roughly equals 1, the relationship
for intermediate values of ri can be approximated:

Nr, fs 1

TNl m(N—1) ™
Except for where |rg| < i, the curves of r., as a
function of ri accompanying the examples in section
3 (e.g., Fig. 1) follow (7) reasonably closely. It should
be noted that (7) describes the combination of degen-
erate behavior associated with covariance interdepen-
dence and the normal shrinkage associated with the
use of fitted coefficients on data outside the develop-
ment sample. As will be demonstrated in subsection
4b, the degenerate behavior plays a negligible role ex-
cept in and near the |rg| < req interval.

The development of the relationships in this section
without accounting for restandardization of the with-
held points x; and y; turns out to generalize to the case
of restandardization also. The difference in the x; and
y; between the cases of not restandardizing and restan-
dardizing is small except for very small or irregular
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samples. In all cases except for zero initial anomaly,
the anomaly magnitude of a restandardized x; or y;
increases. The factor of increase decreases with N and
increases nonlinearly as a function of the initial anom-
aly value. It is the differential inflation factor as a func-
tion of the initial anomaly value that affects cross-val-
idation skill. The effect of restandardization for one
point withheld is to slightly reduce the amplitude of
the negative skill scores when r is close to zero—by
less than 1% for N > 32, about 1% for N = 32, and as
much as 5% for N = 8. Away from the point of max-
imum degeneracy the effect of restandardization rap-
idly diminishes. For more than one point withheld the
effect is slightly larger (e.g., 4% for r, = 0 for N = 32
for four points withheld) but under no condition ap-
proaches the magnitudes found for the composite form
of analog forecasting discussed in Van den Dool
(1987).

4) RELATIONSHIP TO STATISTICAL SIGNIFICANCE

As noted in section 4a(2), degenerate cross-valida-
tion results occur approximately within the interval
| 7| < 7erit, Where 7o = N™'/2. Because the full sample
correlation required for statistical significance (7gg)
at any given significance level is also a function of

N, a correspondence between ry;; and 7y, is definable.
Assuming that the sample is not very small, r;, for the
0.05 level (two-sided) is about double r.; for a priori
selected predictor(s). The rg, values for N = 16, 32,
and 128 are indicated by arrows in the lower abscissa
of each panel of Fig. 1. The statistical significance of
Yot itself is about 0.3 which is nonsignificant even by
lenient standards. Because full dependent sample cor-
relations achieving significance levels of 0.05 or stronger
typically are not noticeably affected by the degeneracy,
cross-validation in such cases can be trusted to provide
representative estimates of the lower correlation skill
expected when the development sample regression
coeflicients are applied to independent data.

b. Cross validation without covariance
interdependence

The cross-validation skill result expected as a func-
tion of ry without the complementary covariance
problem is found by conducting a simulation in which
the interdependence between full sample correlation
and that in the withheld point(s) is removed. This is
approximately accomplished when a large (e.g., 7000
member) “population” of random bivariate normal
predictor-predictand points is defined, and a cross-
validation exercise is performed somewhat differently.
Instead of the redundant, reciprocal procedure used in
section 3, a simple regression relationship is derived
using the first NV points that is used to make a forecast
for the next K points (see section 1 for the broad def-
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inition of cross-validation). An equation is then de-
veloped from the next N points (e.g., points N + K
+ 1 through N + K + N) and applied to the next K
points, etc., until a sufficient number of iterations have
been carried out to produce stable results. In this ex-
periment the procedure is repeated 200 times using
development sample sizes (V) of 31, 15, and 7 (com-
parable to full sample N of 32, 16, and 8 in the degen-
eracy experiments in section 3) and verification sample
sizes (K) of 4. In each of the three cases, 800 forecasts
are later verified using the correlation coefficient as in
the examples in section 3. Note that the “full sample
correlation” among each set of NV + 4 points no longer
remains constant from one set of forecast trials to the
next. When the entire procedure is repeated for differ-
ent values of the initial overall predictor-predictand
correlation among the 7000 points, the resulting cross-
validation correlation skill versus the “population”
correlation (the abscissa of a plot, analogous to the full
sample correlation in section 3) is as shown in Fig. 6.
A much shallower cross-validation skill minimum in
the near-zero “population” correlation region is noted
in comparison to that of the degenerate simulations
shown in section 3. In fact, when the population cor-
relation is zero, there is no particular bias toward neg-
ative cross-validation correlation other than the very
small one due to the finiteness of the 7000-point pop-
ulation; that is, the sampling errors in regression coef-
ficient estimation have approximately equal likelihood
of helping or hurting. For positive cross-validation skills
more than barely above zero, the sample size-related
biases are similar to those using exhaustive, reciprocal
sampling as in section 3 (note the close coincidence of
the N = 31 result in Fig. 6 with the mean N = 32 result
in Fig. 1b). Recall also the results within the range of
positive skill obtained among differing numbers of
points held out per development/forecast trial (Fig.
3). Holding out more points at a time in exhaustive,
reciprocal cross validation has a form of effect similar
to that of eliminating the covariance interdependence
in that the magnitude of the negative skills is reduced
but the skill behavior a short distance outside the in-
terval in which |rg| < 7o remains essentially un-
changed. Both of these behaviors help provide evidence
that the fixed full sample-related degeneracy is con-
centrated in and near that critical interval.

¢. “Ordinary” hindcast-to-forecast skill decrease

In the regions of positive cross-validation skill, co-
variance interdependence under conditions of fixed full
sample definition still occurs in amounts as specified
by (1). However, as positive skill increases, these effects
become negligibly small compared with the other fac-
tors causing negative departures from the full sample
correlation value (the y = | x| lines in Figs. 1-4). The
other factors, depicted in Fig. 6 without a degeneracy,
are related to the artificial skill expected in hindcast
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FIG. 6. Cross-validation correlation skill as a function of overall correlation in a 7000-point
“population,” using 200 nonredundant groups each consisting of N development points and four
forecast target points. A dashed y = |x| line and skill curves for N = 31, 15, and 7 are shown.

See text for further detail.

environments as discussed in Davis (1976) and Mi-
chaelsen (1987). Artificial skill arises both because of
1) a positive bias caused by errors of the x and y sample
means and variances relative to their population coun-
terparts and 2) correlation sampling variability, in
which the relationship between x and y, and thus the
regression coefficient, changes by chance among ran-
dom samples drawn from the same population. The
first artificial skill factor is a decreasing function of
sample size N, and correlation sampling variability is
a decreasing function of both N and r, reflected in the
asymmetric confidence interval found on application
of the Fisher r-to-z transformation (Brooks and Car-
ruthers 1953). When the predictor and predictand
variables are determined prior to the sample selection
for the forecast testing procedure (as they are in this
study), sampling variability has equal chances for
helping or hurting the hindcast skill (i.e., artificial skill
may be either positive or negative). It is when the vari-
ables are chosen a posteriori on the basis of their pre-
dictability within the sample used for the testing (e.g.,
in dependent sample screening multiple regression or
canonical correlation) that sampling variability leads
to a positive bias—that is, positive artificial hindcast
skill. Whether artificial skill is positive or negative,
however, it causes a difference between the sample
regression coeflicient and the population coefficient,
which reduces cross-validation skill. Thus, aside from
the degeneracy, negative departures of cross-validation
skill from the y = | x| line are caused by random errors

in the sample means and variances as well as in the
sample x versus y correlation, all of which throw the
regression equations off target with respect to the pop-
ulation.

Davis ( 1976) regards artificial skill as the difference
between hindcast skill in a dependent sample and that
theoretically possible in the true population. Because
the population statistics (and forecast skill) are un-
known and the set of statistics obtained from a sample
is generally slightly incorrect, the skill realized with
cross-validation on independent data (ignoring the de-
generacy discussed here) is expected to be still lower
than that theoretically possible in the population. Mi-
chaelsen (1987) notes that the difference between
hindcast skill and cross-validation skill (which he re-
gards as artificial skill—a different definition from that
of Davis) is approximately double that between hind-
cast skill and the unknown theoretically possible pop-
ulation skill (i.e., Davis’ artificial skill). In order to
maximize cross-validation skills by bringing them
closer to the theoretical population skill, Davis (1976)
formulated a skill-maximizing damping factor (called
K) for sample regression coefficients to be used for
forecasts on independent population data.

d. Solutions

There are a number of ways to avoid the interde-
pendent covariance relationship that causes the cor-
relation skill score degeneracy in cross-validation.
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Three general types of remedy are possible. They are
1) use of a skill measurement statistic other than the
correlation coefficient; 2) a posteriori “cures” for the
degenerate scores that occur; and 3) modifications to
the cross-validation procedure itself.

The first solution category is the abandonment of
the correlation as the skill measurement statistic in fa-
vor of alternate parameters such as RSME, mean ab-
solute error, or a categorical skill measure. This choice
entails the loss of the desirable features of correlation
coeflicients, such as their readiness for statistical tests
or for conversion to other statistics (like Student’s t),
or their insensitivity to forecast inflation.

A second category of solution is to apply an arbitrary
“quick cure” to the degenerate scores once they occur.
This may be justified with the knowledge that degen-
erate negative scores only appear when the amplitude
of the forecasts is very low (resembling climatology
forecasts), and a near-zero full sample correlation pre-
vails. The correlation coeflicient does not appropriately
represent skill expectations when a methodological ar-
tifact such as a covariance interdependence dominates
the comparatively weak forecast signals reflected in low-
amplitude forecasts.

A simple cure is to set all negative correlation scores
to zero. This has been done in several studies (Van
den Dool 1984; Barnett and Preisendorfer 1987,
Barnston and Ropelewski 1992, among others). An-
other variation of this type of cure is to multiply the
negative correlation scores by the ratio of the standard
deviation of the set of forecasts to that of the set of
corresponding observations over one full round of
cross-validation. This would replace the severely de-
generate negative biases with small negative biases
comparable to those found in the alternate skill score
measures.

In a third category of solution the correlation skill
measure is used and no a posteriori cures are applied.
In this solution the details of the cross-validation pro-
cedure are modified to ameliorate the tendency for de-
generate scores. There are several options, all of which
require using fewer than N — 1 points in the devel-
opment samples.

One option is to keep a constant full sample, but
hold out more than one point in each trial. As noted
in section 3 (Fig. 3), the degeneracy is weakened as
the characteristics of several withheld points are allowed
to randomly balance one another. Further improve-
ment would be possible by selecting groups of points
to withhold whose deviations from the full sample re-
lationship are designed to be maximally balanced. The
more points withheld, the better the potential for de-
signed balancing. However, retaining as large a devel-
opment sample as possible also remains desirable to
reduce sampling variability.

Another way to reduce the degeneracy is to define
a series of overlapping “full samples” containing fewer
than all N points rather than one N-point sample. A
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cross-validation exercise across the differing “full sam-
ples” can be pooled for verification, making use of the
changeable ry to reduce the inverse covariance inter-
dependence that occurs with rotational one-point re-
moval from a constant full sample.

Still another variant of the same class of remedy is
to simulate an operational setting by using only the
carliest P percent (e.g., 67%) of the data for the de-
velopment sample and predicting the next point, then
including that one more point in the development
sample to predict the next, etc. A drawback in this
technique is that the restriction to chronologically for-
ward forecasting greatly reduces the number of fore-
casts, causing more vulnerability to sampling error in
the skill estimate.

The modifications of the cross-validation procedure
are time consuming and generally accomplish only a
partial remediation of the degeneracy. They also result
in greater sampling variability due to the necessity of
using smaller development samples. If retention of the
correlation skill measure is desired, the a posteriori
remedies are clearly the simplest and most effective
options, allowing also for use of the maximum N — 1
point development samples in the spirit of cross-vali-
dation as described in Michaelsen (1987). In view of
the mathematical properties of cross-validation as dis-
cussed in section 4a, coupled with the implication of
the low-amplitude regression forecasts that always ac-
company degenerate skill scores, setting negative cross-
validation correlation skill scores to zero or to weak
negative numbers reflecting the forecast amplitude (i.e.,
the second category of solution) is fully justified and
recommended.

Still another approach to a solution is to conduct
cross-validation only when the full sample relationship
is statistically significant (at least at the 0.05 level, two-
sided). When significance is present and predictor(s)
is chosen a priori (i.e., not using criteria derived from
the sample), the degeneracy typically does not pose a
problem and cross-validation results are trustworthy
estimates of the lower skill to be expected upon appli-
cation of the sample regression coefficients to indepen-
dent data.

All of the above solutions help solve the problem of
the occurrence of individual instances of highly neg-
ative cross-validation forecast skill. The solutions re-
duce or eliminate negative “bull’s-eyes” on spatial maps
of forecast skill and allow for a more representative
mean skill score over the spatial domain when that
score is computed using the individual correlation
skills. It should be noted that such solutions are not
needed for a mean score computed without computing
the individual point values in the process—that is, by
summing over time and space in a large single ensemble
computation. In the latter case the degenerate points
would have negligible weight in the computation be-
cause of their weak forecast amplitudes compared with
those of the other points.
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5. Summary and conclusions

It has been shown that in predictive skill estimation
methods using simple or multiple regression in a cross-
validation framework, the skill score based on the cor-
relation between the cross-validation forecasts and the
corresponding actual data may be highly negative
rather than near zero when actual forecast skill is near
zero and the amplitude of the regression forecasts
is low.

The degeneracy comes about because when one or
more points in a dataset are removed, the statistics of
the remaining points are changed in the direction op-
posite that of the statistics of the removed point(s).
When predictability is high and most points exhibit
varying degrees of the same predictor—predictand re-
lationship, removing a few points hardly causes a
breakdown in the overall statistical relationship. As
overall predictability decreases, there is an increasing
probability that removal of one or more points may
substantively destroy (e.g., change the sign of) the pre-
dictive relationship in the remaining development
subsample relative to that in the removed points. This
can lead to negative skill when averaged over all forecast
trials in the cross-validation exercise. When overall
predictive skill is close to zero, highly negative cross-
validation correlation skill may be expected. In fact, a
correlation-based skill score of -1 is producible using
experimentally contrived datasets. It is this degeneracy
in estimated predictive skill, based on the equal but
proportionally opposite anomalous covariance rela-
tionship between development points and target
point(s), that is described here as a function of the full
sample predictor(s) versus predictand correlation for
various sample sizes, numbers of points held out, pres-
ence of outlier points, and numbers of predictors per
forecast.

The negative skill score degeneracy is found to occur
in regression-based cross-validation when 1) the fore-
casts are verified using the correlation between them
and the actual data values, and 2) the level of actual
(full sample) forecast skill, in terms of correlation
magnitude, is at or below approximately N~!/? where
N is the full sample size—that is, the two-sided statis-
tical significance level is no stronger than about 0.3.
For stronger full sample forecast skill levels the cross-
validation correlation skill score is positive and the
more “traditional” artificial skill behavior is found.
This includes the effects of sampling variability and

the degrees of freedom-related biases (Davis 1976; -

Michaelsen 1987).

There is a choice of several cures to the degeneracy
problem. The first is to replace the correlation coeffi-
cient as the skill measurement tool with an alternate
measure that accounts for the low amplitude of fore-
casts made in low skill environments, such as RSME
or a tally of number of hits in a categorical forecast
framework. (In the categorical case this is true only
when no forecast inflation is carried out; otherwise, a
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degeneracy appears.) Either of these would score a set
of highly damped, low-amplitude forecasts similar to
uniform climatology forecasts. The liability here is the
loss of some statistical conveniences associated with
the correlation score.

Another option is to use correlation-measured skill
but refrain from using nearly all available sample points
in the development subsample in each cross-validation
forecast trial. This leaves opportunities for a balancing
of the peculiarities of points not included in each de-
velopment sample. “Honest” schemes for selection of
maximally balanced sets of points could be designed.
The result would be a decrease in the magnitudes of
equal-but-opposite deviations from the full sample re-
lationship between development subsample points and
withheld forecast target subsample points. Other vari-
ations of this general type of remedy exist, such as de-
fining differing overlapping “full samples” made of
fewer than N points and cross-validating across many
of them in a single set of forecast trials. Unfortunately,
all of these methodological modifications are time
consuming and generally only weaken rather than
eliminate the degeneracy.

Another effective and convenient option is to retain
large development subsamples and use correlation ver-
ification but to regard all negative skill results as zero.
In studies containing spatial distributions of cross-val-
idation correlation skill, the areas of the spatial domains
having positive skill estimates are not strongly affected
by the degeneracy, so no upward adjustments are
needed. A similar option that yields score behavior
similar to that of other methods (e.g., RMSE) is to
multiply negative correlation skill scores by the ratio
of the standard deviation of the forecasts to that of the
corresponding observations.

When the predictor-predictand correlation in the
full dependent sample is statistically significant at the
0.05 level (two-sided), cross validation is unlikely to
produce degenerate skill results. Therefore, another way
to safeguard against the degeneracy is to check for full
sample significance before applying cross-validation. If
significance is achieved, cross-validation can be trusted
to provide representative estimates of the lower skill
levels to be expected when using the sample regression
coeflicients to forecast outside the sample. If the full
sample correlation is nonsignificant, cross-validation
may yield degenerate results and one of the above so-
lutions can be considered.

Provided that the correlation skill score degeneracy
1s acknowledged and handled appropriately, cross-val-
idation remains quite valid and appealing as a tech-
nique to estimate expected predictive skill on an in-
dependent dataset.
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